ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Comments on mesoscopic continuum physics: evolution equation for the distribution function and open questions; pp. 71–74
PDF | doi: 10.3176/proc.2012.1.10

Authors
Heiko Herrmann, Jüri Engelbrecht
Abstract

In mesoscopic continuum physics it is common to introduce a mesoscopic distribution function. Often also an evolution equation is derived for this distribution function. The mesoscopic balance equations for mass and the evolution equation for the distribution function, however, are not independent. We discuss different usage cases of mesoscopic balances in connection with the evolution equation. Furthermore, the problem of virtual boundaries is discovered, referring to cases where the domain in the mesoscopic description becomes non-contiguous despite the macroscopic domain being contiguous.

References

1. Herrmann, H. Towards a description of twist waves in mesoscopic continuum physics. In Applied Wave Mathematics – Selected Topics in Solids, Fluids and Mathematical Methods (Quak, E. and Soomere, T., eds). Springer, 2009, 127–145.

2. Muschik, W., Papenfuss, C., and Ehrentraut, H. Mesoscopic theory of liquid crystals. J. Non-Equilib. Thermodyn., 2004, 29, 75–106.

3. Herrmann, H. and Engelbrecht, J. The balance of spin from the point of view of mesoscopic continuum physics for liquid crystals. J. Non-Equilib. Thermodyn., 2010, 35(3), 337–346.

4. Blenk, S., Ehrentraut, H., and Muschik, W. Macroscopic constitutive equations for liquid crystals induced by their mesoscopic orientation distribution. Int. J. Eng. Sci., 1992, 30(9), 1127–1143.
http://dx.doi.org/10.1016/0020-7225(92)90062-L

5. Blenk, S. and Muschik, W. Mesoscopic concepts for constitutive equations of nematic liquid crystals in alignment tensor formulation. ZAMM, 1993, 73(4–5), T331–T333.

6. Maranganti, R. and Sharma, P. A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids, 2007, 55, 1823–1852.
http://dx.doi.org/10.1016/j.jmps.2007.02.011

Back to Issue