ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Engineering
On the relationship between sea ice deformation and ship damages in the Gulf of Finland in winter 2003
PDF | https://doi.org/10.3176/eng.2007.3.03

Authors
Ove Pärn, Jari Haapala, Tarmo Kõuts, Jüri Elken, Kaj Riska
Abstract

Sea ice ridges and other types of deformed ice are the main obstacles for the winter navigation. During the severe winter 2002/2003, about 60% of the ship hull damages, registered in the Baltic Sea, occurred in the Gulf of Finland. We have analysed ice deformation features, derived from the HELMI sea ice model in relation to two ship damages that occurred in the Gulf of Finland this winter. The damages happened close to the high growth rate area of deformed ice at the interface of different ice conditions with notable ice thickness gradients. It is concluded that the rate of ridged ice production is an indicator of the compression of the ice pack and a potential indicator of ice-induced danger to shipping.

References

1. HELCOM. Report on Shipping Accidents in the Baltic Sea Area for the Year 2005. Baltic Marine Environment Protection Commission (Helsinki Commission), Helsinki, 2006.

 2. Sonninen, S., Nuutinen, M. and Rosqvist, T. Development process of the Gulf of Finland mandatory ship reporting system. VTT Publications, Espoo, 2006, 614.

 3. Rytkönen, J. Risk review of the Baltic Sea shipping. In Maritime Human Factors Research Group, Helsinki, 9–10 March 2006, VTT Presentations. Espoo, 2006.

 4. HELCOM. Towards a Baltic Sea with environmentally friendly maritime activities. In 2nd Stakeholder Conference on the HELCOM Baltic Sea Action Plan. Helsinki, 2007. Baltic Marine Environment Protection Commission (Helsinki Commission), Helsinki, 2007.

 5. HELCOM. Recommendation 25/7 on Safety of Winter Navigation in the Baltic Sea Area. Baltic Marine Environment Protection Commission (Helsinki Commission), Helsinki, 2004.

 6. Seinä, A. and Palosuo, E. The classification of the maximum annual extent of ice cover in the Baltic Sea 1720–1995. MERI: Report Series of the Finnish Institute of Marine Research. Helsinki, 1996, 27, 79–91.

 7. Seinä, A., Eriksson, P., Kalliosaari, S. and Vainio, J. Ice seasons 2001–2005 in Finnish sea areas. MERI: Report Series of the Finnish Institute of Marine Research. Helsinki, 2006, 57, 1–94.

 8. Granskog, M., Kaartokallio, H., Kuosa, H., Thomas, D. N. and Vainio, J. Sea ice in the Baltic Sea – a review. Estuarine Coastal Shelf Sci., 2006, 70, 145–160.

doi:10.1016/j.ecss.2006.06.001

 9. Similä, M., Karvonen, J., Haas, C. and Hallikainen, M. C-Band SAR based estimation of Baltic Sea ice thickness distributions. In Proc. IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2006. Denver, 2006.

10. Kankaanpää, P. Distribution, morphology and structure of sea ice pressure ridges in the Baltic Sea. Fennia, 1997, 175, 139–240.

11. Lensu, M. The Evolution of Ridged Ice Fields. Helsinki University of Technology, Report
M-280
, Espoo, 2003.

12. Leppäranta, M. An ice drift model for the Baltic Sea. Tellus, 1981, 33, 583–596.

13. Haapala, J., Meier, H. E. M. and Rinne, J. Numerical investigations of future ice conditions in the Baltic Sea. Ambio, 2001, 30, 237–244.

doi:10.1639/0044-7447(2001)030[0237:NIOFIC]2.0.CO;2

14. Wang, K., Leppäranta, M. and Kõuts, T. A study of sea ice dynamic events in a small bay. Cold Regions Sci. Technol., 2006, 45, 83–94.

doi:10.1016/j.coldregions.2006.02.002

15. Hänninen, S. Incidents and accidents in winter navigation in the Baltic Sea, winter 2002–2003. Finnish Maritime Administration Research Report, Helsinki, 2003, 54.

16. Haapala, J. Evaluation of the sea-ice components of the ACIA Atmosphere-Ocean General Circulation Models (AOGCMs). In Arctic Climate Feedback Mechanisms: Proc. Workshop at the Norwegian Polar Institute (Gerland, S. and Njåstad, B., eds.). Tromsø, Norway, 2003. Norsk Polarinstitutt Rapportserie, Tromsø, 2004, 124, 19–21.

17. Haapala, J., Lönnroth, N. and Stössel, A. A numerical study of open water formation in sea ice. J. Geophys. Res., 2005, 110, C09011.

doi:10.1029/2003JC002200

18. Thorndike, A. S., Rothrock, D. A., Maykut, G. A. and Colony, R. The thickness distribution of sea ice. J. Geophys. Res., 1975, 80, 4501–4513.

19. Hibler III, W. D. Ice dynamics. In Geophysics of Sea Ice (Untersteiner, N., ed.). NATO ASI Series B, Physics, vol. 146, Plenum Press, New York, 1986, 577–640.

20. Parmeter, R. R. A model of simple rafting in sea ice. J. Geophys. Res., 1975, 80, 1948–1952.

21. Rothrock, D. A. Modeling sea-ice features and processes. J. Glaciol., 1979, 90, 359–375.

22. Timco, G. W. and Burden, R. P. An analysis of the shapes of sea ice ridges. Cold Regions Sci. Technol., 1997, 25, 65–77.

doi:10.1016/S0165-232X(96)00017-1

23. Hibler III, W. D. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr, 1979, 9, 815–846.

doi:10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2

24. Rothrock, D. A. The energetics of the plastic deformations of pack ice by ridging. J. Geophys. Res., 1975, 80, 4514–4519.

25. Zhang, J. and Hibler III, W. D. On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res., 1997, 102, 8691–8702.

doi:10.1029/96JC03744

26. Pastukhov, G. and Talijev, D. Brief Information on Ice Conditions in Gulf of Finland in the Winter 2002–2003. NW Administration of Federal Service of Russia for Hydrometeorology and Environmental Monitoring (NW Hydromet), St. Petersburg, 2003 (in Russian).

27. Haas, C. Airborne EM Measurements of Baltic Ice Thickness. IRIS data report, Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany, 2003.

28. Pärn, O. and Haapala, J. Analysis of the ice model simulation for the Gulf of Finland in 2002/03. Geophysica, 2007. Forthcoming.

29. Jordaan, I. J. Mechanics of ice-structure interaction. Eng. Fract. Mech., 2001, 68, 1923–1960.

doi:10.1016/S0013-7944(01)00032-7
Back to Issue

Back issues