ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Engineering
An experimental investigation of the oscillatory boundary layer around the breaking point; pp. 215–233
PDF | https://doi.org/10.3176/eng.2007.3.04

Author
Toomas Liiv
Abstract

The article describes experimental investigation of the turbulent oscillatory boundary layer in the vicinity of the wave breaking point. Measurements were carried out on the inclined bottom in 29 cross-sections, of which 3 are investigated in the current paper. These cross-sections are chosen so that they include the breaking point. The semi-logarithmic plots of dimensionless velocity profiles were plotted on the basis of laser Doppler anemometer measurements. The velocity distributions in breaking waves are essentially different from those observed in steady flows or in oscillatory flows in rectangular U-tubes.

References

1. Jonsson, I. G. Wave boundary layers and friction factors. In Proc. 10th International Conference Coastal Engineering. Tokyo, 1966, 127–148.

 2. Kalkanis, G. Turbulent flow near an oscillating wall. Beach Erosion Board, Technical Memo 97, 1957.

 3. Kalkanis, G. Transportation of bed material due to wave action. US Army C E R C, Technical Memo 2, 1964.

 4. Sealth, J. F. A. Turbulent oscillatory flow over rough beds. J. Fluid Mech., 1987, 182, 369–409.

doi:10.1017/S0022112087002374

 5. Nielsen, P. On the structure of oscillatory boundary layers. Coastal Eng., 1985, 9, 261–276.

doi:10.1016/0378-3839(85)90011-0

 6. Nielsen, P. Coastal Bottom Boundary Layers and Sediment Transport. World Scientific, New Jersey, London, 2005.

 7. Jensen, B. L. Experimental investigation of turbulent oscillatory boundary layers. Series Paper 45, Institute of Hydrodynamics and Hydraulic Engineering (ISVA), Technical University of Denmark, 1989.

 8. Kaijura, K. A model of the bottom boundary layer in water waves. Bull. Earthquake Res. Inst., 1968, 46, 75–123.

 9. Grant, W. D. and Madsen, O. S. Combined wave and current interaction with a rough bottom. J. Geophys. Res., 1979, 87, 469–481.

10. Grant, W. D. and Madsen, O. S. Movable bed roughness in unsteady oscillatory flow. J. Geophys. Res., 1982, 87, 469–481.

11. Brevik, I. Oscillatory rough turbulent boundary layers. J. Waterway Port Coastal Ocean Division, ASCE, 1981, 107, 175–188.

12. Rodi, W. Turbulence Models and Their Application in Hydraulics. International Association for Hydraulic Research, Delft, 1980.

13. Christensen, E. D. and Deigaard, R. Large eddy simulation of breaking waves. Coastal Eng., 2001, 42, 53–86.

doi:10.1016/S0378-3839(00)00049-1

14. Trowbridge, J. and Madsen, O. S. Turbulent wave boundary layers, I. Model formulation and first order solution. J. Geophys. Res., 1984, 89, 7989–7997.

15. Sealth, J. F. A. Velocities and shear stresses in wave-current flows. J. Geophys. Res., 1991, 96, 15237–15244.

16. Sealth, J. F. A. The suspension of sand by waves. J. Hydraulic Res., 1982, 20, 439–452.

17. Blondeaux, P. and Vittori, G. Oscillatory flow and sediment motion over a rippled bed. In Proc. 22nd International Conference Coastal Engineering. Delft, 1990, 2186–2199.

18. Xiuying Xing, M. E. Wave bottom boundary layer physics and bed load sediment transport in nearshore. Master Thesis, The Ohio State University, 2004.

19. Feddersen, F., Gallagher, E. L., Elgar, S. and Guza, R. T. The drag coefficient, bottom rough­ness, and wave breaking in the nearshore. Coastal Eng., 2003, 48, 189–195.

doi:10.1016/S0378-3839(03)00026-7

20. Trowbridge, J. H. and Agrawal, Y. C. Glimpses of a wave boundary layer. J. Geophys. Res., 1995, 100, 729–743.

doi:10.1029/95JC02131

21. Jonsson, I. G. and Carlsen, N. A. Experimental and theoretical investigations in an oscillatory turbulent boundary layer. J. Hydraulic Res., 1976, 14, 45–60.

22. Jensen, B. L., Sumer, B. M. and Fredsoe, J. Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech., 1989, 206, 265–297.

doi:10.1017/S0022112089002302

23. Stieve, M. J. F. Velocity and pressure field of spilling breakers. Coastal Eng., 1980, 25, 547–566.

24. Liiv, T. and Lagemaa, P. The variation of the velocity and turbulent kinetic energy field in the wave in the vicinity of the breaking point. Forthcoming.

25. Nadaoka, K. and Kondoh, T. Laboratory measurements of velocity field structure in the surf zone by LDV. Coastal Eng. Japan, 1982, 25, 125–145.

26. Lin, P. and Liu, P. L.-F. Turbulence transport, vorticity dynamics and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res., 1998, 103, 15677–15694.

doi:10.1029/98JC01360

27. Pedersen, C., Deigaard, R. and Sutherland, J. Measurements of the vertical correlation in turbulence under broken waves. Coastal Eng., 1998, 35, 231–249.

doi:10.1016/S0378-3839(98)00044-1

28. Arnskov, M. M., Fredsoe, J. and Sumer, B. M. Bed shear stress measurements over smooth bed in three dimensional wave-current motion. Coastal Eng., 1993, 20, 277–316.

doi:10.1016/0378-3839(93)90005-S

29. Stansell, P. Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr., 2002, 32, 1269–1283.

doi:10.1175/1520-0485(2002)032<1269:EIOWBC>2.0.CO;2

30. Rogers, B. D. and Dalrymple, R. A. SPH modelling of breaking waves. In Proc. 29th Inter­national Conference Coastal Engineering. Lisbon, 2004, 1147–1157.

31. Liu, P. C. and Babanin, A. V. Using wavelet spectrum analysis to resolve breaking events in the wind wave time series. Ann. Geophys., 2004, 22, 3335–3345.

32. Sugihara, Y., Tsumori, H. and Takasaki, A. Experimental investigation of turbulent boundary layer beneath a wind-driven surface. In Proc. 37th International Liege Colloquium on Ocean Dynamics. Liege, 2005.

33. Cox, D. T., Kobayashi, N. and Okayasu, A. Bottom shear stress in the surf-zone. J. Geophys. Res., 1996, 101, 337–348.

doi:10.1029/96JC00942

34. Krstic, R. V. and Fernando, H. J. S. The nature of rough-wall oscillatory boundary layers. J. Hydraulic Res., 2001, 39, 655–666.

35. Bryan, K. R., Black, K. P. and Gorman, R. M. Spectral estimates of dissipation rate within and near the surf zone. J. Phys. Oceanogr., 2003, 33, 979–993.

doi:10.1175/1520-0485(2003)033<0979:SEODRW>2.0.CO;2

36. Liiv, T. An experimental investigation of the breaking wave characteristics in coastal regions. In Proc. International Conference on Coastal and Port Engineering in Developing Countries, COPEDEC IV. Rio de Janeiro, 1995, vol. 3, 2334–2343.

37. Liiv, T. Investigation of turbulence in a plunging breaker wave. Proc. Estonian Acad. Sci. Eng., 2001, 7, 58–78.

38. Liiv, U. and Liiv, T. Shear investigations of the breaking waves in the flume. In Proc. 3rd International Conference on Hydro-Science and -Engineering. Cottbus, Berlin, 1998,
CD-ROM, 12 p.

39. Shin, S. Determination of the shear velocities, the bottom roughness and friction factors. Publications of the Oregon State University, Swash Zone Turbulence Group, Report 2, 2004, 15 p.

40. Liiv, U. Unsteady pipe flow transition to turbulence under constant acceleration. In Proc. 10th Asian Congress of Fluid Mechanics. Sri Lanka, 2004, CD-ROM, 7 p.

Back to Issue

Back issues