ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
TEMPERATURE DISTRIBUTION SIMULATION AND OPTIMIZATION DESIGN OF ELECTRIC HEATER FOR IN-SITU OIL SHALE HEATING; pp. 105–120
PDF | doi: 10.3176/oil.2014.2.02

Authors
YANG HAO, GAO XIAOQIAO, XIONG FANSHENG, ZHANG JIALIANG, LI YANJU
Abstract

Electric heating is the main method of exploiting oil shale and electric heater is the key part of the heating element. In this paper, the tem­perature distribution of the electric heater was simulated by the Partial Differential Equation (PDE) of MATLAB, and orthogonal experiment analysis was also carried out to investigate the effects of different factors on the temperature distribution of the heater. The results showed that materials with low density were helpful to improve heating efficiency, and heat pro­duc­tion, density and heat capacity had a great effect on the temperature distribu­tion of the heater. The temperature distribution of the heater increased significantly with increasing heat production and radius of the heater, while higher heat capacity always led to the lower overall temperature of the heater. In addition, axisymmetric U-tube and vacuum heating tube were chosen as the heater, being of optimized shape, while copper and stainless steel were determined to be the optimized heater materials.

References

  1. Liu, Z. J., Dong, Q. S., Ye, S. Q., Zhu, J. W., Guo, W., Li, D. C. et al. The situation of oil shale resources in China. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 870–876 (in Chinese).

  2. Li, S. Y., Ma, Y., Qian, J. L. Global oil shale research, development and utilization today and an overview of three oil shale symposiums in 2011. Sino-Global Energy, 2012, 17(2), 8–14 (in Chinese).

  3. Liu, D. X., Wang, H. Y., Zheng, D. W., Fang, C. H., Ge, Z. X. World progress of oil shale in-situ exploitation methods. Natural Gas Industry, 2009, 29(5), 128–132 (in Chinese).

  4. Kang, Z. Q. The Pyrolysis Characteristics and In-situ Hot Drive Simulation Research that Exploit Oil-gas of Oil Shale. A PhD thesis. Taiyuan University of Technology, Taiyuan, 2008 (in Chinese).

  5. Rangel-German, E. R., Schembre, J., Sandberg, C., Kovscek, A. R. Electrical-heating-assisted recovery for heavy oil. J. Petrol. Sci. Eng., 2004, 45(3–4), 213–231.
http://dx.doi.org/10.1016/j.petrol.2004.06.005

  6. Espinosa-Paredes, G., Garcia-Gutierrez, A. Estimation of static formation tem­pera­tures in geothermal wells. Energ. Convers. Manage., 2003, 44(8), 1343–1355.
http://dx.doi.org/10.1016/S0196-8904(02)00117-6

  7. Espinosa-Paredes, G., Morales-Diaz, A., Olea-González, U., Ambriz-Garcia, J. J. Application of a proportional-integral control for the estimation of static formation temperatures in oil wells. Mar.  Petrol. Geol., 2009, 26(2), 259–268.
http://dx.doi.org/10.1016/j.marpetgeo.2007.11.002

  8. Espinosa-Paredes, G., Espinosa-Martinez, E. G. A feedback-based inverse heat transfer method to estimate unperturbed temperatures in wellbores. Energ. Convers. Manage., 2009, 50(1), 140–148.
http://dx.doi.org/10.1016/j.enconman.2008.08.017

  9. Aouizerate, G., Durlofsky, L. J., Samier, P. New models for heater wells in subsurface simulations, with application to the in-situ upgrading of oil shale. Computat. Geosci., 2012, 16(2), 519–533.
http://dx.doi.org/10.1007/s10596-011-9263-1

10. Burnham, A. K., Day, R. L., Hardy, M. P., Wallman, P. H. AMSO's novel approach to in-situ oil shale recovery. Oil Shale: a solution to the liqud fuel dilemma. ACS Symposium Series, 2009, 1032, 149–160.

11. Rodríguez, R., Bashbush, J. L., Rincón, A. Feasibility of using electrical down­hole heaters in Faja heavy oil reservoirs. In: International Thermal Operations and Heavy Oil Symposium, ITOHOS 2008, 20–23 October 2008, Calgary, Alberta, Canada. Society of Petroleum Engineers, 2008, 2, 823–833.

12. Rodriguez, R., Bashbush, J. L., Rincón, A. Electrical downhole heaters for Faja heavy-oil reservoirs. J. Petrol. Technol., 2009, 61(3), 77–79.

13. Gasbarri, S., Diaz, A., Guzman, M. Evaluation of electric heating on recovery factors in extra heavy oil reservoirs. In: SPE International Heavy Oil Con­ference and Exhibition, 12–14 December 2011, Kuwait City, Kuwait, 91–107.
http://dx.doi.org/10.2118/149779-MS

14. McQueen, G., Parman, D., Williams, H. Enhanced oil recovery of shallow wells with heavy oil: a case study in electro thermal heating of California oil wells. In: 56th Annual Petroleum and Chemical Industry Conference, Anaheim, Sept. 14–16, 2009, Paper No. PCIC-2009-33, 293–300.

15. Wang, S. P., Liu, D. X., Wang, H. Y., Zhao, Q., Fang, C. H., Zheng, D. W. Current situation and development potential of electric heating process of in-situ oil shale conversion. Natural Gas Industry, 2011, 31(2), 114–118 (in Chinese).

16. Fang, Z. H., Zheng, D. W., Ge, Z. X. Science and Technology Innovation Herald, 2010, 36, 110–111 (in Chinese).

17. Wang, A. M., Wang, Z. M. Electric heating hollow rod drive screw pump system. China Petroleum Machinery (CPM), 1998, 26(3), 36–38 (in Chinese).

18. Peng, R. L., Kang, Y. S., Zha, X., Cao, Z. L., Zhang, W., Yang, S. Z. Improve­ments of hollow rod for electrical heated oil recovery technology. Petroleum Geology and Engineering, 2007, 21(1), 93–94 (in Chinese).

19. Chen, G. C. Research and application of electrical heating technology for well testing in high pour-point oil wells. Well Testing, 2010, 19(1), 72–74 (in Chinese).

Back to Issue