ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
PREPARATION OF METAL-DOPED CARBON AEROGELS FROM OIL SHALE PROCESSING BY-PRODUCTS; pp. 185–194
PDF | doi: 10.3176/oil.2014.2.08

Authors
KRISTIINA KREEK, MARIA KULP, MAI UIBU, ARVO MERE, MIHKEL KOEL
Abstract

Carbon aerogels are nanostructured porous carbon materials, which can be produced from locally available phenolic compounds. A method for the preparation of metal-doped carbon aerogels from oil shale pro­cessing by-products 5-methylresorcinol and 2,6-dihydroxy-4-methyl­benzoic acid was developed. Aerogels doped with Ni, Co and Cu were cha­rac­terized by atomic absorption spectroscopy, nitrogen adsorption, trans­mission electron microscopy and X-ray diffraction.
   The resulting materials exhibited pore diameters in microporous and mesoporous regions, high surface areas and pore volumes. The metal content in aerogels was found to be dependent on the amount of ion-exchange moiety and metal content as high as 14.5 wt% was achieved in carbon aerogels, where also metal nanoparticles had formed.

References

  1. Pekala, R. W. Low density, resorcinol-formaldehyde aerogels. US Patent 4873218, 1989.

  2. Pekala, R. W., Alviso, C. T., Kong, F. M., Hulsey, S. S. Aerogels derived from multifunctional organic monomers. J. Non-Cryst. Solids, 1992, 145, 90–98.
http://dx.doi.org/10.1016/S0022-3093(05)80436-3

  3. Pérez-Caballero, F., Peikolainen, A.-L., Uibu, M., Kuusik, R., Volobujeva, O., Koel, M. Preparation of carbon aerogels from 5-methylresorcinol-formaldehyde gels. Micropor. Mesopor. Mat., 2008, 108(1–3), 230–236.
http://dx.doi.org/10.1016/j.micromeso.2007.04.006

  4. Peikolainen, A.-L., Pérez-Caballero, F., Koel, M. Low-density organic aerogels from oil shale by-product 5-methylresorcinol. Oil Shale, 2008, 25(3), 348–358.
http://dx.doi.org/10.3176/oil.2008.3.06

  5. Pérez-Caballero, F., Peikolainen, A.-L., Koel, M., Herbert, M., Galindo, A., Montilla, F. Preparation of the catalyst support from the oil-shale processing by-product. Open Petrol. Eng. J., 2008, 1(1), 42–46.
http://dx.doi.org/10.2174/1874834100801010042

  6. Peikolainen, A.-L., Volobujeva, O., Aav, R., Uibu, M., Koel, M. Organic acid catalyzed synthesis of 5-methylresorcinol based organic aerogels in acetonitrile. J. Porous Mat., 2012, 19(2), 189–194.
http://dx.doi.org/10.1007/s10934-011-9459-8

  7. Moreno-Castilla, C., Maldonado-Hódar, F. J., Rivera-Utrilla, J., Rodríguez-Castellón, E. Group 6 metal oxide-carbon aerogels. Their synthesis, charac­terization and catalytic activity in the skeletal isomerization of 1-butene. Appl. Catal. A-Gen., 1999, 183(2), 345–356.
http://dx.doi.org/10.1016/S0926-860X(99)00068-X

  8. Maldonado-Hódar, F. J., Ferro-García, M. A., Rivera-Utrilla, J., Moreno-Castilla, C. Synthesis and textural characteristics of organic aerogels, transition metal-containing organic aerogels and their carbonized derivates. Carbon, 1999, 37(8), 1199–1205.
http://dx.doi.org/10.1016/S0008-6223(98)00314-5

  9. Bekyarova, E., Kaneko, K. Structure and physical properties of tailor-made Ce,Zr-doped carbon aerogels. Adv. Mater., 2000, 12(21), 1625–1628.
http://dx.doi.org/10.1002/1521-4095(200011)12:21<1625::AID-ADMA1625>3.0.CO;2-9

10. Bekyarova, E., Kaneko, K. Microporous nature of Ce, Zr-doped carbon aerogels. Langmuir, 1999, 15(21), 7119–7121.
http://dx.doi.org/10.1021/la990725k

11. Miller, J. M., Dunn, B. Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures. Langmuir, 1999, 15(3), 799–806.
http://dx.doi.org/10.1021/la980799g

12. Baumann, T. F., Fox, G. A., Satcher, J. H., Yoshizawa, N., Fu, R., Dressel­haus, M. S. Synthesis and characterization of copper-doped carbon aerogels. Langmuir, 2002, 18(18), 7073–7076.
http://dx.doi.org/10.1021/la0259003

13. Moreno-Castilla, C., Maldonado-Hódar, F. J. Carbon aerogels for catalysis applications: An overview. Carbon, 2005, 43(3), 455–465.
http://dx.doi.org/10.1016/j.carbon.2004.10.022

14. Fu, R., Baumann, T. F., Cronin, S., Dresselhaus, G., Dresselhaus, M. S., Satcher, J. H. Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. Langmuir, 2005, 21(7), 2647–2651.
http://dx.doi.org/10.1021/la047344d

15. Steiner, S. A., Baumann, T. F., Kong, J., Satcher, J. H., Dresselhaus, M. S. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Langmuir, 2007, 23(9), 5161–5166.
http://dx.doi.org/10.1021/la063643m

16. Cotet, L. C., Gich, M., Roig, A., Popescu, I. C., Cosoveanu, V., Molins, E., Danciu, V. Synthesis and structural characteristics of carbon aerogels with a high content of Fe, Co, Ni, Cu, and Pd. J. Non-Cryst. Solids, 2006, 352(26–27), 2772–2777.
http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.039

17. Marie, J., Berthon-Fabry, S., Achard, P., Chatenet, M., Pradourat, A., Chainet, E. Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths. J. Non-Cryst. Solids, 2004, 350, 88–96.
http://dx.doi.org/10.1016/j.jnoncrysol.2004.06.038

18. Martínez, S., Vallribera, A., Cotet, C. L., Popovici, M., Martín, L., Roig, A., Moreno-Mañas, M., Molins, E. Nanosized metallic particles embedded in silica and carbon aerogels as catalysts in Mizoroki-Heck coupling reaction. New J. Chem., 2005, 29, 1342–1345.
http://dx.doi.org/10.1039/b506784g

19. Carrott, P. J. M., Marques, L. M., Ribeiro Carrott, M. M. L. Characterisation of the porosity of polymer and carbon aerogels containing Fe, Ni or Cu prepared from 2,4-dihydroxybenzoic acid by n-nonane pre-adsorption and density functional theory. Micropor. Mesopor. Mat., 2010, 131(1–3), 75–81.
http://dx.doi.org/10.1016/j.micromeso.2009.12.005

20. Marques, L. M., Conceição, F. L., Ribeiro Carrott, M. M. L., Carrott, P. J. M. Diffusion of gases in metal containing carbon aerogels. Fuel Process. Technol., 2011, 92(2), 229–233.
http://dx.doi.org/10.1016/j.fuproc.2010.01.013

21. Carrott, P. J. M., Marques, L. M., Ribeiro Carrott, M. M. L. Core-shell polymer aerogels prepared by co-polymerisation of 2,4-dihydroxybenzoic acid, resorcinol and formaldehyde. Micropor. Mesopor. Mat., 2012, 158, 170–174.
http://dx.doi.org/10.1016/j.micromeso.2012.03.040

22. Al-Muhtaseb, S. A., Ritter, J. A. Preparation and properties of resorcinol-formaldehyde organic and carbon aerogels. Adv. Mater., 2003, 15(2), 101–114.
http://dx.doi.org/10.1002/adma.200390020

Back to Issue