ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
QUANTITATIVE EVALUATION OF OIL SHALE BASED ON WELL LOG AND 3-D SEISMIC TECHNIQUE IN THE SONGLIAO BASIN, NORTHEAST CHINA; pp. 128–150
PDF | doi: 10.3176/oil.2012.2.04

Authors
JIANLIANG JIA, ZHAOJUN LIU, QINGTAO MENG, RONG LIU, PINGCHANG SUN, YONGCHENG CHEN
Abstract

The quantitative evaluation of the Upper Cretaceous oil shale has been conducted by abundant testing, log and seismic data from the Songliao Basin in Northeast China. Based on the log-seismic characteristics of oil shale, the technique of log-seismic multi-attributes reconstruction to evaluate single-well oil shale has been adopted. By using the method of log-con­strained seismic inversion, the inversion volume of wave impedance, total organic carbon (TOC), and oil yield have been obtained to carry out evalua­tion of oil shale. According to the evaluation results, the inversion of wave impedance can only be used for qualitative evaluation of the spatial distribu­tion of oil shale. Meanwhile, the inversion of TOC and oil yield can be used not only to evaluate the spatial distribution of oil shale, but also for quantitative evaluation of the quality of oil shale. Hence, the evaluation technique of oil shale was developed combining single-well log evaluation and spatial seismic evaluation, which integrates the quantitative evaluation of oil shale with geophysical technique.

References

  1. Liu, Z. J., Yang, H. L., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Meng, Q. T., Zhang, H. L., Gan, S. C. Oil Shale in China. Petroleum Industry Press, Beijing, 2009, 2–3; 157–167 (in Chinese, summary in English).

  2. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.

  3. Brendow, K. Global oil shale issues and perspectives. Oil Shale, 2003, 20(1), 81–92.

  4. Liu, Z. J., Liu, R. Oil shale resource state and evaluating system. Earth Science Frontiers, 2005, 12(3), 315–323 (in Chinese, summary in English).

  5. Liu, Z. J., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Zhang, H. L. Oil shale resources and its distribution in China. China Oil & Gas, 2007, 14(3), 26–28.

  6. Liu, Z. J., Meng, Q. T., Liu, R. Characteristics and genetic types of continental oil shales in China. Journal of Palaeogeography, 2009, 11(1), 105–114 (in Chinese, summary in English).

  7. Reinik, J., Heinmaa, I., Mikkola, J.-P., Kordás, K., Kirso, U. Synthesis of calcium-alumino-silicate hydrates from oil shale ash in different alkaline media. Oil Shale, 2010, 27(1), 47–57.
http://dx.doi.org/10.3176/oil.2010.1.06

  8. Kavak, O., Connan, J., Erik, N. Y., Yalçin, M. N. Organic geochemical charac­teristics of Şırnak asphaltites in Southeast Anatolia, Turkey. Oil shale, 2010, 27(1), 58–83.

  9. He, J. L., Deng, S. W., Chen, W. L., Jia, Y. K., Gao, J. Q. Evaluation of oil shale in the Southern Songliao Basin using logging techniques. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 909–914 (in Chinese, summary in English).

10. Beers, R. F. Radioactivity and organic content of some Paleozoic shales. AAPG Bull., 1945, 29(1), 1–22.

11. Swanson, V. E. Oil yield and uranium content of black shales. USGS Pro­fessional Paper, 1960, 356-A, 1–44.

12. Fertl, W. H., Rieke, H. H. Gamma ray spectral evaluation techniques identify fractured shale reservoirs and source-rock characteristics. J. Petrol. Technol., 1980, 32(11), 2053–2062.
http://dx.doi.org/10.2118/8454-PA

13. Schmoker, J. W. Determination of organic-matter content of Appalachian Devonian shales from Gamma-ray logs. AAPG Bull., 1981, 65(7), 1285–1298.

14. Tan, T. D. Identification of kuchersits from well logs. Well Logging Technology, 1988, 12(6), 1–11.

15. Hertzog, R., Colson, L., Seeman, O., O'Brien, M., Scott, H., McKeon, D., Wraight, P., Grau, J., Ellis, D., Schweitzer, J., Herron, M. Geochemical logging with spectrometry tools. SPE Formation Evaluation, 16792, 1989, 4(2), 153–162.

16. Schmoker, J. W. Determination of organic content of Appalachian Devonian shales from formation-density logs. AAPG Bull., 1979, 63(9), 1504–1537.

17. Schmoker, J. W., Hester, T. C. Organic carbon in Bakken Formation, United States portion of Williston Basin. // AAPG Bull., 1983, 67(12), 2165–2174.

18. Autric, A., Dumensil, P. Resistivity, radioactivity and sonic transit time logs to evaluate the organic content of low permeability rocks. The Log Analyst, 1985, 26(3), 36–45.

19. Hussain, F. A. Source rock identification in the state of Kuwait using wireline logs. SPE Formation Evaluation, 15747, 1987, 477–488.

20. Meyer, B. L., Nederlof, M. H. Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity crossplots. AAPG Bull., 1984, 68(2), 121–129.

21. Zhao, Y. C. The theory and application of logging for source rock evaluation-From the working results in Nanyang and Biyang Depressions. Earth Science (Journal of China University of Geosciences), 1990,15(1), 65–74 (in Chinese, summary in English).

22. Mendelson, J. D., Toksoz, M. N. Source rock characterization using multi­variate analysis of log data. SPWLA 26th Annual Logging Symposium, 1985, paper UU.

23. Fertl, W. H., Chilingar, G. V. Total organic carbon content determined from well logs. SPE Formation Evaluation, 15612, 1988, 3(2), 407–419.

24. Kamel, M. H., Mabrouk, W. M. Estimation of shale volume using a combina­tion of the three porosity logs. J. Petrol. Sci. Eng., 2003, 40(3–4), 145–157.
http://dx.doi.org/10.1016/S0920-4105(03)00120-7

25. Xu, S. H., Zhu, Y. Q. Well logs response and prediction model of organic carbon content in source rocks-A case study from the source rock of Wenchang Formation in the Pearl Mouth Basin. Petroleum Geology & Experiment. 2010, 32(3), 290–295. (in Chinese, summary in English).

26. Passey, Q. R., Creaney, S., Kulla, J. B., Moretti, F. J., Stroud, J. D. A practical model for organic richness from porosity and resistivity logs. AAPG Bull., 1990, 74(12), 1777–1794.

27. Xu, X. H, Huang, H. P, Lu, S. N. A quantitative relationship between well logging information and organic carbon content. Journal of Jianghan Petroleum Institute, 1998, 20(3), 8–12 (in Chinese, summary in English).

28. Zhang, Z. W, Zhang, L. H. A method of source rock evaluation by well-logging and its application result. Petroleum Exploration and Development, 2000, 27(3), 84–87 (in Chinese, summary in English).

29. Zhu, Z. Y., Liu, H., Li, Y. M. The analysis and application of △logR method in the source rock’s identification. Progress in Geophysics, 2003, 18(4), 647–649 (in Chinese, summary in English).

30. Kamali, M. R., Mirshady, A. A. Total organic carbon content determined from well logs using △logR and Neuro Fuzzy techniques. J. Petrol. Sci. Eng., 2004, 45(3-4), 141–148.
http://dx.doi.org/10.1016/j.petrol.2004.08.005

31. Huang, Z., Williamson, M. A., Fowler, M. G., McAlpine, K. D. Predicted and measured petrophysical and geochemical characteristics of the Egret Member oil source rock, Jeanne d'Arc Basin, offshore eastern Canada. Mar. Petrol. Geol., 1994, 11(3), 294–306.
http://dx.doi.org/10.1016/0264-8172(94)90051-5

32. Huang, Z., Williamson, M. A. Artificial neural network modelling as an aid to source rock characterization. Mar. Petrol. Geol., 1996, 13(2), 227–290.
http://dx.doi.org/10.1016/0264-8172(95)00062-3

33. Kadkhodaie-Ilkhci, A., Rezaee, M. R., Rahimpour-Bonab, H. A committee neural network for prediction of normalized oil content from well log data: An example from South Pars Gas Field, Persian Gulf. J. Petrol. Sci. Eng., 2009, 65(1–2), 23–32.
http://dx.doi.org/10.1016/j.petrol.2008.12.012

34. Patterson, C. D., Quarles, C. A., Breyer, J. A. Possible new well-logging tool using positron Doppler broadening to detect total organic carbon (TOC) in hydrocarbon source rocks. Radiat. Phys. Chem., 2003, 68(3–4), 523–526.
http://dx.doi.org/10.1016/S0969-806X(03)00222-6

35. Yu, J. G., Han, W. G., Yu, Z. J., Lu, S. Q., Wang, J. D. Fine interpretation and description of river facies reservoir. Oil Geophysical Prospecting, 2005, 40(3), 318–321 (in Chinese, summary in English).

36. Liu, Z., Chang, M., Zhao, Y., Li, Y. Z., Shen, H. L. Method of early prediction on source rocks in basins with low exploration activity. Earth Science Frontiers, 2007, 14(4), 159–167 (in Chinese, summary in English).
http://dx.doi.org/10.1016/S1872-5791(07)60031-1

37. Feng, Z. Q., Jia, C. Z., Xie, X. N., Zhang, S., Feng, Z. H., Cross, T. A. Tectono­stratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Res., 2010, 22(1), 79–95.
http://dx.doi.org/10.1111/j.1365-2117.2009.00445.x

38. Liu, Z. J., Wang, D. P., Liu, L., Liu, W. Z, Wang, P. J., Du, X. D., Yang, G. Sedimentary characteristics of the cretaceous in the Songliao Basin. Acta Geol. Sin-Engl., 1993, 6(2), 167–180.

39. Hampson, D. P., Schuelke, J. S., Quirein, J. A. Use of multiattribute transforms to predict log properties from seismic data. Geophysics, 2001, 66(1), 220–236.
http://dx.doi.org/10.1190/1.1444899

40. Jia, J. L., Liu, Z. J., Chen, Y. C., Fang, S. The technique of log-seismic multi-attributes reconstruction. Oil Geophysical Prospecting, 2010, 40(3), 436–442 (in Chinese, summary in English).

41. Jia, J. L., Liu, Z. J., Chen, Y. C., Fang, S., Yan, L., Sun, P. C. The method of log-seismic multi-attributes density curves to reconstruct inversion and its application. Journal of Jilin University (Earth Science Edition), 2010, 40(3), 699–706 (in Chinese, summary in English).

Back to Issue