headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Remarks on (super-)accelerating cosmological models in general scalar–tensor gravity; pp. 306–312

(Full article in PDF format) doi: 10.3176/proc.2010.4.09


Authors

Laur Järv, Piret Kuusk, Margus Saal

Abstract

We consider Friedmann–Lemaître–Robertson–Walker cosmological models in the framework of general scalar–tensor theories of gravity (STG) with arbitrary coupling functions, set in the Jordan frame. First we describe the general properties of the phase space in the case of barotropic matter fluid and scalar field potential for any spatial curvature (flat, spherical, hyperbolic). Then we address the question under which conditions epochs of accelerated and super-accelerated expansion are possible in STG. For flat models filled with dust matter (and vanishing potential) we give a necessary condition on the coupling function of the scalar field which must be satisfied to allow acceleration and super-acceleration. This is illustrated by a specific example.

Keywords

scalar–tensor gravity, super-accelerating cosmological models.

References

  1. Sahni , V. and Starobinsky , A. Reconstructing dark energy. Int. J. Mod. Phys. D , 2006 , 15 , 2105–2132.
doi:10.1142/S0218271806009704

  2. Alam , U. , Sahni , V. , and Starobinsky , A. A. Exploring the properties of dark energy using type Ia supernovae and other datasets. JCAP , 2007 , 0702 , 011.

  3. Nesseris , S. and Perivolaropoulos , L. Crossing the phantom divide: theoretical implications and observational status. JCAP , 2007 , 0701 , 018.

  4. Wu , P. and Yu , H. W. Probing the cosmic acceleration history and the properties of dark energy from the ESSENCE supernova data with a model independent method. JCAP , 2008 , 0802 , 019.

  5. Perivolaropoulos , L. and Shafieloo , A. Bright high z SnIa: a challenge for LCDM? arXiv:0811.2802 [astro-ph].

  6. Caldwell , R. R. A phantom menace? Phys. Lett. B , 2002 , 545 , 23–29.
doi:10.1016/S0370-2693(02)02589-3

  7. Vikman , A. Can dark energy evolve to the phantom? Phys. Rev. D , 2005 , 71 , 023515.
doi:10.1103/PhysRevD.71.023515

  8. Caldwell , R. R. and Doran , M. Dark-energy evolution across the cosmological-constant boundary. Phys. Rev. D , 2005 , 72 , 043527.
doi:10.1103/PhysRevD.72.043527

  9. Amendola , L. and Tsujikawa , S. Phantom crossing , equation-of-state singularities , and local gravity constraints in f(R) models. Phys. Lett. B , 2008 , 660 , 125–132.
doi:10.1016/j.physletb.2007.12.041

10. Bamba , K. , Geng , C. Q. , Nojiri , S. , and Odintsov , S. D. Crossing of the phantom divide in modified gravity. arXiv:0810.4296 [hep-th].

11. Faraoni , V. Superquintessence. Int. J. Mod. Phys. D , 2002 , 11 , 471–482.
doi:10.1142/S0218271802001809

12. Elizalde , E. , Nojiri , S. , and Odintsov , S. D. Late-time cosmology in (phantom) scalar–tensor theory: dark energy and the cosmic speed-up. Phys. Rev. D , 2004 , 70 , 043539.
doi:10.1103/PhysRevD.70.043539

13. Perivolaropoulos , L. Crossing the phantom divide barrier with scalar tensor theories. JCAP , 2005 , 0510 , 001.

14. Demianski , M. , Piedipalumbo , E. , Rubano , C. , and Tortora , C. Accelerating universe in scalar tensor models: confrontation of theoretical predictions with observations. Astron. Astrophys. , 2006 , 454 , 55–66.
doi:10.1051/0004-6361:20054601

15. Gannouji , R. , Polarski , D. , Ranquet , A. , and Starobinsky , A. A. Scalar–tensor models of normal and phantom dark energy. JCAP , 2006 , 0609 , 016.

16. Tsujikawa , S. , Uddin , K. , Mizuno , S. , Tavakol , R. , and Yokoyama , J. Constraints on scalar–tensor models of dark energy from observational and local gravity tests. Phys. Rev. D , 2008 , 77 , 103009.
doi:10.1103/PhysRevD.77.103009

17. Billyard , A. , Coley , A. , and Ibáñez , J. On the asymptotic behaviour of cosmological models in scalar–tensor theories of gravity. Phys. Rev. D , 1998 , 59 , 023507.
doi:10.1103/PhysRevD.59.023507

18. Gunzig , E. , Faraoni , V. , Figueiredo , A. , Rocha , T. M. , and Brenig , L. The dynamical system approach to scalar field cosmology. Class. Quant. Grav. , 2000 , 17 , 1783–1814.
doi:10.1088/0264-9381/17/8/304

19. Gunzig , E. , Saa , A. , Brenig , L. , Faraoni , V. , Rocha Filho , T. M. , and Figueiredo , A. Superinflation , quintessence , and nonsingular cosmologies. Phys. Rev. D , 2001 , 63 , 067301.
doi:10.1103/PhysRevD.63.067301

20. Carvalho , F. C. and Saa , A. Non-minimal coupling , exponential potentials and the w < –1 regime of dark energy. Phys. Rev. D , 2004 , 70 , 087302.

21. Järv , L. , Kuusk , P. , and Saal , M. The dynamics of scalar–tensor cosmology from RS two-brane model. Phys. Rev. D , 2007 , 75 , 023505.
doi:10.1103/PhysRevD.75.023505

22. Järv , L. , Kuusk , P. , and Saal , M. Scalar–tensor cosmology at the general relativity limit: Jordan vs Einstein frame. Phys. Rev. D , 2007 , 76 , 103506.
doi:10.1103/PhysRevD.76.103506

23. Hrycyna , O. and Szydlowski , M. Extended quintessence with non-minimally coupled phantom scalar field. Phys. Rev. D , 2007 , 76 , 123510.
doi:10.1103/PhysRevD.76.123510

24. Faraoni , V. Phase space geometry in scalar–tensor cosmology. Ann. Phys. (N.Y.) , 2005 , 317 , 366–382.
doi:10.1016/j.aop.2004.11.009

25. Järv , L. , Kuusk , P. , and Saal , M. Scalar–tensor cosmologies: fixed points of the Jordan frame scalar field. Phys. Rev. D , 2008 , 78 , 083530.
doi:10.1103/PhysRevD.78.083530

26. Faraoni , V. , Jensen , M. N. , and Theuerkauf , S. A. Non-chaotic dynamics in general-relativistic and scalar–tensor cosmology. Class. Quant. Grav. , 2006 , 23 , 4215–4230.
doi:10.1088/0264-9381/23/12/016

27. Esposito-Farese , G. and Polarski , D. Scalar–tensor gravity in an accelerating universe. Phys. Rev. D , 2001 , 63 , 063504.
doi:10.1103/PhysRevD.63.063504
 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December