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Abstract. We study a nonlocal parabolic equation obtained from the reduction of the well-
known thermistor problem. Error estimate bounds are established for a family of time
discretization scheme originated by E. Magenes in Analyse Mathématique et Applications
(Gauthier–Villars, Paris, 1988).
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1. INTRODUCTION

The thermistor problem has received great interest from scientific community,
and has been the subject of a variety of mathematical investigations in the
past decade. We refer in particular to the works of Cimatti, Antontsev, and
Chipot ([1−3]), as well as to the papers of many other authors (see [4−7] and the
references therein). In the present work, we study the following general nonlocal
initial boundary value problem which, under special simplifications, replaces the
classical system of the thermistor problem (see [8,9])

∂u

∂t
−4β(u) = λ

f(u)( ∫
Ω f(u) dx

)2 , in QT = Ω×]0;T [,

β(u) = 0 on ∂Ω×]0;T [,

u(0) = u0 in Ω,

(1)
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where 4 is the Laplacian operator with respect to the x-variables, Ω is a bounded
open regular set on Rd(d ≥ 2), with a smooth boundary ∂Ω, T is a fixed positive
real, and λ is a positive parameter.

The problem (1) arises, for example, in studying the heat transfer in the
resistor device whose resistance f(u) depends strongly on the temperature u. Let
β : R → R be a nondecreasing locally Lipschitzian continuous function with
β(0) = 0, and let lβ and Lβ be two constants such that 0 ≤ lβ ≤ β′(s) ≤ Lβ a.e.
in R. The standard norm in L2(Ω) is denoted by ‖.‖, and we denote by 〈., .〉 the
inner product in L2(Ω) or the duality between H−1(Ω) and H1

0 (Ω).
If u0 ∈ L∞(Ω), the existence and uniqueness of the solution for (1) which

satisfies
u ∈ L∞(QT )

⋂
H1(0, T, H−1(Ω)),

θ ∈ L2(0, T,H1
0 (Ω)),

θ(x, t) = β(u(x, t)) a.e. in QT ,

can be established under the same hypotheses as the ones found in [5]:

(H1) f : R→ R is a locally Lipschitzian function;

(H2) there exist positive constants σ, c1, c2, and ν such that for all ξ ∈ R

σ ≤ f(ξ) ≤ c1|ξ|ν+1 + c2.

Before proceeding we give some general notation concerning the time
discretization for the problem (1). Let us denote by N a fixed positive integer
and let the time step be denoted by τ = T

N , tn = nτ , and In = (tn−1, tn) for
n = 1, ..., N. If z is a continuous function (respectively summable), defined in
(0, T ) with values in H−1(Ω) or L2(Ω) or H1

0 (Ω), we define

zn = z(tn, .), zn =
1
τ

∫

In

z(t, .)dt, z0 = z0 = z(0, .).

Then we define the following time discretization scheme:

Un − τ4β(Un) = Un−1 + λτ
f(Un)( ∫

Ω f(Un) dx
)2 , in Ω,

1 ≤ n ≤ N,

β(Un) = 0 on ∂Ω,

U0 = u0 in Ω.

(2)

Investigations of the solution for (1) by this Euler forward method are rare in the
literature. We refer the reader to the work [6] for the particular case β = Id, where
existence and uniqueness results are obtained and also the questions of stability
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and error estimates are studied. Many works present diverse ways of realizing this
discretization by introducing different schemes. These schemes can be explicit,
implicit or semi-implicit. The difficulty of integration in time comes from the
function θ = β(u), which can present a vanishing derivative. This yields to a
degenerate parabolic problem. This nonlinearity is important in particular for pure
materials where phase transition arises in an isotherm manner. In (1), we must
solve, at each time step, a nonlinear elliptic equation which is a source of serious
difficulties. In the nondegenerate case lβ > 0, we can solve this problem using a
linearization technique and considering the following equation:

Un − τ∇(β′(Un−1)∇Un) = Un−1 + λτ
f(Un)( ∫

Ω f(Un) dx
)2 , (3)

where ∇ denotes the gradient with respect to the x-variables.
However, it is inconvenient that, for each n, the coefficients of the linear

equation (3) change. This leads, after discretization in x, to the fact that the “rigidity
matrix” changes at each instant n. Even in the degenerate case (lβ = 0), the choice
here is fixed on a semi-implicit scheme arising in works using nonlinear semi-
group theory for the resolution of solidification problems. By convention, we call
it the “Chernoff scheme”. The Chernoff scheme has been studied in particular by
Magenes [10], Massera [11], and Verdi and Visintin [12]. This numerical method
consists in the construction of a family of time discretization schemes, where
at each n it is reduced to the resolution of a linear equation with coefficients
independent of n, and then in a correction, which includes a calculation of a given
function.

Let us explicate now the Chernoff scheme. We begin with discretizing the time
derivative of Eq. (1) with the help of the implicit scheme. The equation is written
as

Un − Un−1

τ
−4Θn = λ

f(Un−1)( ∫
Ω f(Un−1) dx

)2 ,

Θn = β(Un).

(4)

Now we can relax this equation by the following:

Un = Un−1 + µ(Θn − β(Un−1)). (5)

Finally, we substitute the relation (5) in (4), thus obtaining a semi-implicit formula
for Θn:

µ
Θn − β(Un−1)

τ
−4Θn = λ

f(Un−1)( ∫
Ω f(Un−1) dx

)2 . (6)

361



In relations (5) and (6), µ is a scheme relaxation parameter, which satisfies the
condition 0 < µ ≤ L−1

β .
In discrete form, the new scheme is given as follows:

U0 = u0,

Θn − τ

µ
4Θn = β(Un−1) +

λτ

µ

f(Un−1)( ∫
Ω f(Un−1) dx

)2 ,

Un = Un−1 + µ(Θn − β(Un−1)).

(7)

The paper is structured as follows. In Section 2 we will show some stability
results, and in Section 3 we will focus on the question of error estimate bounds.

In the sequel, c always denotes some generic positive constant depending on
u0, T, µ, Lβ . Moreover, the values may vary from one step to the next one.

2. STABILITY RESULTS

Let τ = T
N be the time discretization step and define now by iteration the

following scheme for 0 < µ ≤ L−1
β :

U0 = u0,

Un = Un−1 + µ
(
Θn − β(Un−1)

)
,

(8)

where Θn is given by

Θn = G

(
τ

µ

) (
β(Un−1) +

λτ

µ

f(Un−1)( ∫
Ω f(Un−1) dx

)2

)
,

with G( t
µ) = (I − t

µ4)−1.

Writing (8) under variational formulation, we have

〈Un − Un−1, ϕ〉+ µ〈β(Un−1)−Θn, ϕ〉 = 0, ∀ϕ ∈ L2(Ω). (9)

Let us give some useful notation below. Let α be the following real value
function α(s) = s − µβ(s), ∀s ∈ R. The fact that 0 < µ ≤ L−1

β implies that
0 ≤ α′(s) ≤ 1 a.e. in R. Denote by ψg(s) =

∫ s
0 g(t)dt, t ∈ R, the convex function

for all absolutely continuous functions g : R→ R such that g(0) = 0 and

0 ≤ g′(s) ≤ c a.e. in R,

1
2c

g2(s) ≤ ψg(s) ≤ c

2
s2, s ∈ R.
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We give the scheme stability in L∞(Ω), which plays an important role in proving
error estimates.

Lemma 2.1. If u0 ∈ L∞(Ω), then for all n ∈ {1, ..., N}, Un ∈ L∞(Ω).

Proof. Multiplying (7) by |Θn|k−1Θn, k ≥ 1, we have

〈Θn, |Θn|k−1Θn〉+ 〈−4Θn, |Θn|k−1Θn〉 ≤ c‖Θn‖k
k.

In other terms,

‖Θn‖k+1
k+1 + k

∫
|∇Θn|2|Θn|k−1 ≤ c‖Θn‖k

k.

Using then Holder inequality in the right-hand side and the positivity of the second
term in the left-hand side, we get

‖Θn‖k+1
k+1 ≤ c‖Θn‖k

k+1.

It follows that ‖Θn‖k+1 ≤ c. Letting k → +∞, we have ‖Θn‖∞ ≤ c, and using
then the relation Un = Un−1 + µ(Θn − β(Un−1)), we have Un ∈ L∞(Ω).

Remark 2.2. The general properties of elliptic and parabolic operators that are
applied in [10] for appropriate L∞ estimate do not work here due to the presence
of the nonlocal term λf(u)/

( ∫
Ω f(u) dx

)2.

Next, we prove the following stability results.

Theorem 2.3. Under hypotheses (H1), (H2) and for a fixed µ with 0 < µ ≤ L−1
β ,

there exists a positive constant c such that for any n ∈ {1, ..., N}

max
1≤n≤N

‖β(Un)‖2 ≤ c, (10)

N∑

n=1

‖Un − Un−1‖2 ≤ c, (11)

∣∣∣∣∣
N∑

n=1

〈β(Un−1)−Θn,Θn〉
∣∣∣∣∣ ≤ c, (12)

max
1≤n≤N

‖(Θn)‖2 ≤ c. (13)
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Proof. The proof is standard. We refer to [10] and give here a detail for sake of
completeness only.

Choosing ϕ = Θn in (9) and summing up from 1 to m with m ≤ N , we get

m∑

n=1

〈Un − Un−1, Θn〉+ µ
m∑

n=1

〈β(Un−1)−Θn,Θn〉 = 0. (14)

With the notation above, we have

Θn =
1
µ

(Un − Un−1) + β(Un−1)

=
1
2
β(Un) +

1
2µ

(
α(Un)− α(Un−1)

)
+

1
2µ

Un − 1
2µ

α(Un−1).

Using the convexity of functions ψα and ψβ and with the aid of the elementary
identity 2a(a− b) = a2 − b2 + (a− b)2, a and b ∈ R, we obtain

m∑

n=1

∫

Ω

{(
ψβ(Un)− ψβ(Un−1)

)
+

1
µ

(
ψα(Un−1)− ψα(Un)

)}
dx

+
1
2µ

(
‖Um‖2 − ‖U0‖2 +

m∑

n=1

‖Un − Un−1‖2

)
≤ 2

m∑

n=1

〈Un − Un−1, Θn〉.

Due to the fact that 0 ≤ α′ ≤ 1 and proprieties of ψα and ψβ , we get

m∑

n=1

〈Un − Un−1, Θn〉 ≥ −c + c‖β(Um)‖2 +
1
4µ

m∑

n=1

‖Un − Un−1‖2.

From (14) we have

max
1≤n≤N

‖β(Un)‖2 +
N∑

n=1

‖Un − Un−1‖2 +
N∑

n=1

〈β(Un−1)−Θn,Θn〉 ≤ c.

Then ∣∣∣∣∣
N∑

n=1

〈β(Un−1)−Θn, Θn〉
∣∣∣∣∣ ≤ c,

and (10)–(12) hold.
On the other hand, from (8) we have Θn = 1

µ(Un −Un−1) + β(Un−1). Using
then (10), (11), we get (13).
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3. ERROR ESTIMATES

Let (−4)−1 be the Green operator satisfying

〈∇(−4)−1v,∇w〉 = 〈v, w〉 ∀v ∈ H1
0 (Ω), w ∈ H−1(Ω).

For n = 1, ..., N , there exists a unique solution Θn∗ for the problem

Θn
∗ ∈H1

0 (Ω),

τ4Θn
∗ = µ(Θn − β(Un−1))− λτ

f(Un−1)( ∫
Ω f(Un−1) dx

)2 ,
(15)

which verifies
‖Θn

∗ −Θn‖ ≤ ‖β(Un−1)−Θn‖. (16)

Further, we can construct a function Θn : In → H1
0 (Ω) such that

Θn(tn) = Θn, (17)

Θn =
1
τ

∫

In

Θn(t)dt = Θn
∗ , (18)

‖Θn(t)−Θn‖ ≤ ‖β(Un−1)−Θn‖, t ∈ In. (19)

It suffices, for example, to consider Θn(tn) = Θn, Θn(t) = Θn∗ for tn−1 < t < tn.
By (15), (17), and (18) we have

Un − Un−1 = µ(Θn(tn)− β(Un−1)) = τ4Θn + λτ
f(Un−1)( ∫

Ω f(Un−1) dx
)2 .

Then, applying (11), we obtain

µ2
N∑

n=1

‖Θn(tn)− β(Un−1)‖2 = τ2
N∑

n=1

‖4Θn + λ
f(Un−1)( ∫

Ω f(Un−1) dx
)2 ‖2 ≤ c,

(20)

which gives, by hypotheses and L∞ estimate of Un, that

τ2
N∑

n=1

‖4Θn‖2 ≤ c. (21)

We also have by (12) that

τ
N∑

n=1

〈
−4Θn − λ

f(Un−1)( ∫
Ω f(Un−1) dx

)2 ,Θn(tn)

〉
≤ c, (22)
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or

N∑

n=1

‖Θn(tn)‖2 ≤ 2
N∑

n=1

‖Θn(tn)− β(Un−1)‖2 + 2
N∑

n=1

‖β(Un−1)‖2 ≤ c.

We deduce from (22) that

τ

N∑

n=1

〈∇Θn,∇Θn(tn)〉 ≤ c, (23)

and by (19)–(21) we obtain

N∑

n=1

‖Θn(t)−Θn(tn)‖2 ≤ c,
N∑

n=1

‖Θn −Θn(tn)‖2 ≤ c. (24)

On the other hand, using (23), (24), and Young inequality, we get

τ‖∇Θn‖2 =− τ
N∑

n=1

〈4Θn, Θn〉

=− τ

N∑

n=1

〈4Θn, Θn(tn)〉 − τ

N∑

n=1

〈4θn, Θn −Θn(tn)〉

≤ − τ
N∑

n=1

〈∇Θn,∇Θn(tn)〉+
1
2

N∑

n=1

τ2‖4Θn‖2

+
1
2

N∑

n=1

‖Θn −Θn(tn)‖2 ≤ c. (25)

We are now ready to give the main theorem of error estimates. To this end, we
introduce the errors eθ and ẽθ for t ∈ In, defined by eθ = θ(t) − Θn(t), ẽθ =
θ(t)−Θn, and eu = u(t)− Un.

Theorem 3.1. Under hypotheses (H1), (H2) and for all fixed µ such that
0 < µ ≤ L−1

β , we have

‖eθ‖L2(QT ) +
∥∥∥∥
∫ t

0
eθds

∥∥∥∥
L∞(0,T,H1(Ω))

≤ cτ1/4.

Proof. Using (15) and (18), we reformulate (9) as

〈Un−Un−1, ϕ〉+λ〈∇Θn,∇ϕ〉 =
λτ( ∫

Ω f(Un−1) dx
)2 〈f(Un−1), ϕ〉, ∀ϕ ∈ H1

0 (Ω).

(26)
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Integrating the continuous problem (1) over In, we get, under the notation given
in the introduction, that

〈un − un−1, ϕ〉+ τ〈∇θ
n
,∇ϕ〉 = λ

∫

In

1( ∫
Ω f(u) dx

)2 〈f(u), ϕ〉, ∀ϕ ∈ H1
0 (Ω).

(27)

Subtracting (27) from (26) and summing up from n = 1, .., m with m ≤ N , we
deduce

〈um − Um, ϕ〉+ τ

m∑

n=1

〈∇(
θ

n −Θn)
,∇ϕ〉

≤ c τ

∣∣∣∣∣
m∑

n=1

〈f(u)
n − f(Un−1), ϕ〉

∣∣∣∣∣ + c τ

∣∣∣∣∣
m∑

n=1

〈f(Un−1), ϕ〉
∣∣∣∣∣ . (28)

Choosing ϕ = τ
∑m

n=1

(
θ

n −Θn)
in (28), we get

〈
um − Um, τ

m∑

n=1

(
θ

n −Θn)
〉

+ τ2

∥∥∥∥∥
m∑

n=1

∇(
θ

n −Θn)
∥∥∥∥∥

2

≤ I1 + I2, (29)

where

I1 = cτ2

∣∣∣∣∣
m∑

n=1

〈
f(u)

n − f(Un−1),
m∑

n=1

(
θ

n −Θn)
〉∣∣∣∣∣

and

I2 = c τ2

∣∣∣∣∣
m∑

n=1

〈
f(Un−1),

m∑

n=1

(
θ

n −Θn)
〉∣∣∣∣∣ .

We have

τ2

∥∥∥∥∥
m∑

n=1

∇(
θ

n −Θn)
∥∥∥∥∥

2

=

∥∥∥∥∥
m∑

n=1

∇
∫

In

(
θ(t)−Θn)

∥∥∥∥∥
2

=
∥∥∥∥∇

∫ tm

0
eθdt

∥∥∥∥
2

. (30)
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On the other hand,

τ

〈
um − Um,

m∑

n=1

(
θ

n −Θn)
〉

= τ
m∑

n=1

〈um − Um,
(
θ

n −Θn)〉

=
m∑

n=1

∫

In

〈um − Um, θ(t)− θ
n〉

=
m∑

n=1

∫

In

〈um − Um, ẽθ〉

=
m∑

n=1

∫

In

〈u(t)− Um, ẽθ〉dt +
m∑

n=1

∫

In

〈um − u(t), ẽθ〉dt

=
m∑

n=1

∫

In

〈eu, ẽθ〉dt +
m∑

n=1

∫

In

〈um − u(t), ẽθ〉dt

= I3 + I4.

We estimate I4:

I4 =
m∑

n=1

∫

In

〈um − u(t), ẽθ〉dt

=
m∑

n=1

∫

In

〈∫ tm

t

∂u

∂s
, ẽθ

〉
dt

≤
m∑

n=1

∫

In

(∫ tm

t

∥∥∥∥
∂u

∂s

∥∥∥∥
H−1(Ω)

ds

)
‖ẽθ‖H1(Ω)dt

≤ τ

∥∥∥∥
∂u

∂s

∥∥∥∥
L2(0,tm,H−1(Ω))

‖ẽθ‖L2(0,tm,H1(Ω)).

But, using (25), we obtain

‖ẽθ‖2
L2(0,tm,H1(Ω)) =

m∑

n=1

∫

In

‖∇θ(t)−∇Θn‖2dt

≤ 2
m∑

n=1

∫

In

‖∇θ(t)‖2dt + 2
m∑

n=1

∫

In

‖∇Θn‖2dt

≤ 2‖θ‖2
L2(0,tm,H1(Ω)) + 2

m∑

n=1

τ‖∇Θn‖2dt ≤ c,

and we then deduce
|I4| ≤ cτ.
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By (25) and L∞ estimates of u(t) and Un we have

I1 = cτ2

∣∣∣∣∣
m∑

n=1

〈
f(u)

n − f(Un−1),
m∑

n=1

(
θ

n −Θn)
〉∣∣∣∣∣

≤ c

(∫

Ω

( m∑

n=1

∫

In

(f(u)− f(Un−1))dt
)2

dx

)1/2

×
(∫

Ω

( m∑

n=1

∫

In

(θ(t)−Θn)dt
)2

dx

)1/2

≤ c

(
m∑

n=1

∫ In

0
‖f(u)− f(Un−1)‖2

2dt

)1/2

×
(

m∑

n=1

∫ In

0
‖θ(t)−Θn‖2

2dt

)1/2

≤ c

(
m∑

n=1

∫ In

0
‖f(u)− f(Un−1)‖2

2dt

)1/2 (∫ tm

0
‖ẽθ‖2

2dt

)1/2

≤ c

(
m∑

n=1

∫ In

0
‖f(u)− f(Un−1)‖2

2dt

)1/2

‖ẽθ‖L2(0,tm,L2(Ω))

≤ c

(
m∑

n=1

∫ In

0
‖f(u)− f(Un−1)‖2

2dt

)1/2

‖ẽθ‖L2(0,tm,H1(Ω))

≤ cτ1/2.

The proof is complete.

As a consequence of the theorem, we have the following corollary.

Corollary 3.2. For a τ small enough, the inequality

‖eu‖L∞(0,T,H−1(Ω)) ≤ cτ1/4

holds.

Proof. Coming back to (28) and choosing ϕ = −4−1(um − Um) yields

〈um − Um,−4−1(um − Um)〉

− τ
m∑

n=1

〈∇(
θ

n −Θn)
,∇4−1(um − Um)〉

≤ c τ

∣∣∣∣∣
m∑

n=1

〈f(u)
n − f(Un−1),4−1(um − Um)〉

∣∣∣∣∣

+ c τ

∣∣∣∣∣
m∑

n=1

〈f(Un−1),4−1(um − Um)〉
∣∣∣∣∣ .
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Using the properties of the Green operator 4−1, we obtain that

‖um − Um‖2
H−1(Ω) − τ

m∑

n=1

〈(θn −Θn), um − Um〉

≤ c τ

∣∣∣∣∣
m∑

n=1

〈f(u)
n − f(Un−1),4−1(um − Um)〉

∣∣∣∣∣

+ c τ

∣∣∣∣∣
m∑

n=1

〈f(Un−1),4−1(um − Um)〉
∣∣∣∣∣ .

Moreover, we have

‖um − Um‖2
H−1(Ω)

≤ ‖um − Um‖H−1(Ω)

∥∥∥∥∇
∫ tm

0
eθdt

∥∥∥∥

+ c τ

∣∣∣∣∣
m∑

n=1

〈f(u)
n − f(Un−1),4−1(um − Um)〉

∣∣∣∣∣

+ c τ

∣∣∣∣∣
m∑

n=1

〈f(Un−1),4−1(um − Um)〉
∣∣∣∣∣ .

From Young inequality and the previous theorem, we get

‖um − Um‖2
H−1(Ω)

≤ cτ1/2 + c τ

∣∣∣∣∣
m∑

n=1

〈f(u)
n − f(Un−1),4−1(um − Um)〉

∣∣∣∣∣

+ c τ

∣∣∣∣∣
m∑

n=1

〈f(Un−1),4−1(um − Um)〉
∣∣∣∣∣ . (31)

Using again Holder and Young inequalities yields

τ

∣∣∣∣∣
m∑

n=1

∫

In

〈f(u)
n − f(Un−1),4−1(um − Um)〉

∣∣∣∣∣

=

∣∣∣∣∣
m∑

n=1

〈(f(u)− f(Un−1))dt,4−1(um − Um)〉
∣∣∣∣∣

≤ cτ1/2

(
m∑

n=1

∫

In

‖(f(u)− f(Un−1))‖2
2dt

)1/2

× ‖um − Um‖H−1(Ω)

≤ cτ1/2‖um − Um‖H−1(Ω) = cτ1/4τ1/4‖um − Um‖H−1(Ω)

≤ cτ1/2 + cτ1/2‖um − Um‖2
H−1(Ω). (32)
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In the same way, we have

τ

∣∣∣∣∣
m∑

n=1

〈f(Un−1),4−1(um − Um)〉
∣∣∣∣∣ ≤ cτ1/2 + cτ1/2‖um − Um‖2

H−1(Ω). (33)

From (31)–(33) we get that

(1− cτ1/2)‖um − Um‖2
H−1(Ω) ≤ cτ1/2.

Then we have for a small τ

‖um − Um‖2
H−1(Ω) ≤ cτ1/2.

In other terms, we have

max
1≤m≤N

‖um − Um‖L∞(0,T,H−1(Ω)) ≤ cτ1/4.

We use finally the fact that ∂u
∂t ∈ L2(0, T,H−1(Ω)) to conclude with the intended

result.
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Chernoffi skeemi veahinnangud mittelokaalse paraboolse
ülesande aproksimeerimisel

Moulay Rchid Sidi Ammi ja Olena Mul

On uuritud termistori probleemi lähendamisest saadud mittelokaalset parabool-
set võrrandit. On leitud veahinnangute piirid Magenes’i poolt 1988. aastal loodud
aja diskretiseerimise skeemile.
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