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Abstract. Viability theorems for systems with dynamics depending on time in a measurable
way, with time-dependent state constraints, are presented. We compare the results with ours
using, for the first time in viability theory, generalized differential quotients. Some illustrative
examples are given.
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1. INTRODUCTION

Let K be a multivalued map from the interval T = [0, a] to Rn. On its graph,
denoted by Gr(K), another multivalued map F is defined. Its values are closed
subsets of Rn. The map F , called an orientor field, gives rise to a multivalued
Cauchy problem

{
ẏ(t) ∈ F (t, y(t)), a.e. on T,
y(t0) = y0.

(1.1)

The inclusion is called viable if for every (t0, y0) ∈ Gr(K) there is a
global absolutely continuous forward trajectory y : [t0, a] → Rn of this inclusion,
satisfying the initial condition y(t0) = y0, where y0 ∈ K(t0) and t0 ∈ [0, a[. As the
differential inclusion may come from a control system ẏ(t) = f(t, y(t), u(t)), the
viability of the differential inclusion may be interpreted as a kind of controllability
of the control system with time-dependent constraints. The first result on viability,
by Nagumo [1], was formulated for a constant multifunction K and a single-
valued time-independent F . In its full complexity, viability was studied by
Aubin [2,3], Bothe [4], Deimling [5], Frankowska et al. [6], Haddad [7,8], Hu and
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Papageorgiu [9,10], and many others. The obtained results give conditions on K and
F that guarantee the viability of the inclusion. Besides various measurability and
continuity assumptions, the essential one states that the intersection of F (t, y) with
some generalized derivative of K at (t, y) is nonempty for almost all t ∈ [0, a]
and all y ∈ K(t). This requirement is a direct extension of the Nagumo [1]
condition. We recall all these conditions and present our own viability criteria.
As a generalized derivative we choose the generalized differential quotient (GDQ),
introduced recently by Sussmann [11,12]. Since the GDQ of a multivalued function
is not unique (see [11−16]), we use one, denoted by SGDQ, which seems to fit best:
it contains all important directions without superfluous ones. SGDQ is the closure
of the union of all minimal GDQs. Finally, we compare conditions introduced by
different authors, setting a road map of the viability problem.

2. BASIC NOTATIONS AND DEFINITIONS

By a set-valued map (multifunction) we mean a triple F = (A,B, G) such that
A and B are sets and G is a subset of A× B. The sets A, B, G are, respectively,
the source, target, and graph of F , which we write A = So(F ), B = Ta(F )
and G = Gr(F ). For x ∈ So(F ) we write F (x) = {y : (x, y) ∈ Gr(F )}, where
Gr(F ) := {(x, y) : y ∈ F (x)} (it can happen that F (x) = ∅ for x ∈ So(F )).
The sets Do(F ) = {x ∈ So(F ) : F (x) 6= ∅}, Im(F ) =

⋃
x∈So(F ) F (x), are,

respectively, the domain and image of F . If F = (A,B,G) is a set-valued map, we
say that F is a set-valued map from A to B with graph G, and write F : A ³ B.
We use SV M(A,B) to denote the set of all set-valued maps from A to B. We
reserve capital letters for set-valued maps and small ones for ordinary (single-
valued and everywhere defined) maps.

If X is a metric space supplied with a metric d, K ⊆ X , then we
denote the distance from x to K by dist(x,K) := infy∈K d(x, y), where we set
dist(x, ∅) := +∞. The ball of radius ε > 0 around K in X is denoted by
B(K, ε) := {x ∈ X : dist(x, K) < ε}. The balls B(K, ε) are neighbourhoods of
K. When K is compact, each neighbourhood of K contains such a ball around K.

Let X and Y be metric spaces. We say that a set-valued map F : X ³ Y
is upper semicontinuous (abbr. u.s.c.) at x̄ ∈ Do(F ) if and only if for any
neighbourhood U of F (x) there exists δ > 0 such that for every x ∈ B(x̄, δ),
F (x) ⊂ U . We say that a sequence {Fn} of set-valued maps Fn : X ³ Y graph
converges to F , and write Fn

gr−→ F , if

lim
n→∞4(Gr(Fn), Gr(F )) = 0,

where
4(A, B) = sup{dist(q, B) : q ∈ A}.
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Let T be a metric space and {Aτ}τ∈T be a family of subsets of a metric
space X . The upper limit (lim sup) and the lower limit (lim inf) of {Aτ} at τ0

are closed sets defined by

lim sup
τ→τ0

Aτ =
{

v ∈ X| lim inf
τ→τ0

dist(v, Aτ ) = 0
}

,

lim inf
τ→τ0

Aτ =
{

v ∈ X| lim sup
τ→τ0

dist(v, Aτ ) = 0
}

.

A subset A ⊂ X is said to be the limit of {Aτ} if

A = lim sup
τ→τ0

Aτ = lim inf
τ→τ0

Aτ =: lim
τ→τ0

Aτ .

Throughout the paper, by λ(·) we mean the Lebesgue measure.
For F ∈ SV M(Rn,Rm) we define ||F (x)|| := sup{||y|| : y ∈ F (x)} if

F (x) 6= ∅ and set ||∅|| = −∞.
A set C ⊆ Rn is called a cone if rx ∈ C for all x ∈ C and r ≥ 0.
Let us consider a multifunction K : T ³ Rn, Do(K) = T = [0, a] ⊆ R.

We say that K is ε–δ upper semicontinuous from the left (shorter: left u.s.c.) if for
every t0 ∈ (0, a] and ε > 0 there exists a δ = δ(t0, ε) > 0 such that

K(t) ⊂ K(t0) + B(0, ε) for all t ∈ (t0 − δ, t0] ∩ T.

Let K be closed-valued. We say that K is left absolutely continuous on [0, a]
if the following property holds:

∀ ε > 0, ∀ compact P ⊂ Rn, ∃δ > 0, ∀N0 ⊂ N
∀{ti, τi : ti < τi, i ∈ N0} with (ti, τi) ∩ (tj , τj) = ∅ for i 6= j,

Σ(τi − ti) ≤ δ ⇒ Σ4 (K(ti) ∩ P, K(τi)) ≤ ε.

Let K : T ³ Rn, where Do(K) = T = [0, a] ⊆ R, be a constraint
multifunction and F : GrK ³ Rn, where Do(F ) = GrK, be an orientor field (i.e.
multivalued vector field). Consider the multivalued Cauchy problem as follows:

{
ẏ(t) ∈ F (t, y(t)), a.e. on T,

y(t0) = y0.
(2.1)

By a viable solution y(·) to (2.1) we mean an absolutely continuous function
y : [t0, a] → Rn that satisfies the inclusion almost everywhere, the initial condition
and y(t) ∈ K(t) for t ∈ [t0, a].

Definition 2.1. [17] Let X, Y be normed spaces and F : X ³ Y be a set-valued
map. The contingent derivative DF (x0, y0) at x0 ∈ X and y0 ∈ F (x0) is the
set-valued map from X to Y defined by

Gr(DF (x0, y0)) := TGr(F )(x0, y0),
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where TC(x) is the contingent cone (the “Bouligand cone”) to C at x and is defined
by

TC(x) =
{

w ∈ X : lim inf
t↓0

dist(x + tw, C)
t

= 0
}

.

In other words,

v0 ∈ DF (x0, y0)(u0) ⇔ (u0, v0) ∈ TGr(F )(x0, y0).

Equivalently, we can write:

v0 ∈ DF (x0, y0)(u0) ⇔ lim inf
h→0+u→u0

dist
(

v0,
F (x0 + hu)− y0

h

)
= 0.

When F := f is single-valued, we set Df(x) := Df(x, f(x)).
For F locally Lipschitz, the definition of the contingent derivative reduces to

the following (see, e.g., [18]):

v0 ∈ DF (x0, y0)(u0) ⇔ lim inf
h→0+

dist
(

v0,
F (x0 + hu0)− y0

h

)
= 0.

Definition 2.2. [12] Let X and Y be metric spaces. A set-valued map F : X ³ Y is
Cellina continuously approximable (abbreviated CCA) if for every compact subset
K of X
(1) Gr(F |K) is compact;
(2) there exists a sequence {fj}∞j=1 of single-valued continuous maps fj : K → Y

such that fj
gr−→ F |K .

We use CCA(X, Y ) to denote the set of all CCA set-valued maps from X to Y .
When f : X → Y is a single-valued map, then f belongs to CCA(X, Y ) if

and only if f is continuous.
The CCA property of set-valued maps is strongly related to the following

definition of directional generalized differential quotients (abbr. GDQs).

Definition 2.3. [11] Let m,n ∈ N, F : Rm ³ Rn be a set-valued map,
x ∈ Rm, y ∈ Rn, y ∈ F (x) and let Λ be a nonempty compact subset of Rn×m

(then an element of Λ is an n×m matrix). Let S be a subset of Rm. We say that Λ
is a generalized differential quotient (GDQ) of F at (x, y) in the direction S, and
write Λ ∈ GDQ(F ; x, y; S) if for every positive real number δ there exist U,G
such that
(1) U is a compact neighbourhood of 0 in Rm and U ∩ S is compact;
(2) G is a CCA set-valued map from x + U ∩ S to the δ-neighbourhood Λδ of Λ in
Rn×m;

(3) G(x) · (x− x) ⊆ F (x)− y for every x− x ∈ U ∩ S.
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The concept of GDQs is a generalization of the classical derivative. In
particular, if f : Rm → Rn is differentiable at x ∈ Rm, then f ′(x) ∈
GDQ(f ; x, f(x);Rm).

Observe that GDQs are not unique. If Λ ∈ GDQ(F ; x, y;S), then for any
compact overset Λ′ of Λ also Λ′ ∈ GDQ(F ;x, y; S).

We say that F : Rm ³ Rn is GDQ-differentiable at (x, y) in the direction S if
there exists at least one Λ ∈ GDQ(F ;x, y; S).

Definition 2.4. [16] Let F be GDQ-differentiable at (x, y) in the direction S. A
minimal GDQ of F at (x, y) in the direction S is a minimal element of the set
GDQ(F ;x, y; S) (minimal in the sense of inclusions of sets).

Theorem 2.5. [14] If the set of all GDQs of a set-valued map F at (x, y) in the
direction S is not empty, then there exists in this set at least one minimal GDQ at
the same point and in the same direction.

As we can have more than one minimal GDQ, we introduce the following
concept of SGDQ. Let SGDQ(K; t, y;S) denote the closure of the union of all
minimal GDQs of K at (t, y) ∈ GrK in the direction S.

Example 2.6. Let F : R³ R be a set-valued map such that

F (x) =

{
[−|x|, |x|] if x 6= 0,
{0} if x = 0.

One can show that any singleton {a} for a ∈ [−1, 1] is a minimal GDQ of F at
(0, 0). Then we compute SGDQ(K; 0, 0;R) = [−1, 1].

In order to give an idea what are relations between SGDQ and the contingent
derivative, we present the following results.

Theorem 2.7. [15] Let F : R ³ Rn, Do(F ) = T ⊆ R, be a set-valued map and
y ∈ F (t). Then

Λ ∈ minGDQ(F ; t, y;R+) ⇒ Λ ⊆ DF (t, y)(1).

Remark 2.8. Similarly, one can show that

Λ ∈ minGDQ(F ; t, y;R−) ⇒ Λ ⊆ DF (t, y)(−1).

Corollary 2.9. Under assumptions of Theorem 2.7 we have the following inclusion:

SGDQ(F ; t, y;R+) ⊆ DF (t, y)(1).
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Corollary 2.10. Consider F : R ³ Rn. If F is GDQ-differentiable at the
point (x, y) in the direction of R+ (R−), then there exists the contingent derivative
DF (t, y)(1) (DF (t, y)(−1)).

The next example shows that the contingent derivative in general is larger than
the closure of the union of minimal GDQs.

Example 2.11. Consider a set-valued map F : R³ R defined as follows:

K(t) =

{
{t− 1

n | n ∈ N, n > 1
t } ∪ {t} if t 6= 0,

{0} if t = 0.

Then DK(0, 0)(1) = [0, 1], while SGDQ(K; 0, 0;R+) = {1}.

3. A COMPARISON OF SOME THEOREMS ON VIABILITY

In this section we present and compare some theorems on the viability of
differential inclusions. The first viability result is due to Nagumo [1]. His
theorem concerns single-valued continuous, time-independent f and closed time-
independent constraints K(t) ≡ K0, and gives a necessary and sufficient condition
for the existence of a solution to the problem. Namely,

Theorem 3.1. [1] Let K0 be a closed subset of Rn and let f : K0 → Rn be a
continuous, bounded map. A necessary and sufficient condition for a differential
equation ẏ = f(y) to have a viable solution for any initial condition y0 ∈ K0 is

∀ y ∈ K0, f(y) ∈ TK0(y).

An easy generalization of the Nagumo result, in the case of a time-independent
set-valued map, i.e. F (t, y) = F (y), is the following theorem which can be found
in [18].

Theorem 3.2. [18] Let K0 be a closed subset of Rn and let a multifunction
F : K0 ³ Rn be bounded, u.s.c. with closed convex values. Then the Cauchy
problem {

ẏ ∈ F (y),

y(0) = y0, y0 ∈ K0

(3.1)

has a solution on R+ for every y0 ∈ K0 if and only if

F (y) ∩ TK0(y) 6= ∅ on K0.
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The above theorem generalizes Nagumo’s result replacing a differential
equation by an inclusion. Thus, if F is single-valued, we get Nagumo Theorem as
a consequence. One can see that the tangential condition from Nagumo Theorem

∀ x ∈ K0, f(x) ∈ TK0(x)

is replaced in the last theorem by the following:

F (y) ∩ TK0(y) 6= ∅ on K0

(it is due to convex values of F ; in a nonconvex case one has to assume F (y) ⊂
TK0(y) on K0, see, e.g., [18]). We call the last condition the tangential condition.
The tangential condition will also appear in other theorems in the sequel (it may be
slightly changed) with an exception of our theorem, where we use GDQs instead
of the contingent derivative.

Going further, one wants to give sufficient conditions guaranteeing the
existence of a trajectory of an orientor field remaining in time-dependent
constraints K(t). This leads to a generalization of Theorem 3.2 by Bothe [4] (in
1992). He gives sufficient conditions assuming that for all t and all y ∈ K(t)
the contingent derivative DK(t, y)(1) is nonempty and contains F (t, y) for almost
all t, where K is left u.s.c. and F is measurable with respect to t and u.s.c. with
respect to y. Under these conditions there exists a viable solution to the Cauchy
problem (2.1).

Theorem 3.3. [4] Let T = [0, a] ⊂ R and K : T ³ Rn, Do(K) = T , be a left
u.s.c. set-valued map with closed convex values such that the interior of K(t) is
not empty a.e. in T . Let F : GrK ³ Rn, Do(F ) = GrK have closed convex
values, F (·, y) be measurable, F (t, ·) be u.s.c., and ||F (t, y)|| ≤ α(t)(1 + |y|) on
GrK with α ∈ L1(T ). Finally, let

({1} × F (t, y)) ⊂ TGrK(t, y) for all t ∈ [0, a)\N, y ∈ K(t),

({1} × Rn) ∩ TGrK(t, y) 6= ∅ for all t ∈ N, y ∈ K(t),
(3.2)

where N ⊂ T and λ(N) = 0. Then (2.1) has a viable solution.

Another work that concerns the same problem is the article, from 1995, of
Frankowska et al. [6]. Changing conditions on K and the tangential condition, the
authors give sufficient conditions guaranteeing that Cauchy problem (2.1) has a
viable solution.

Theorem 3.4. [6] Let K be a left absolutely continuous multifunction with closed
values on T = [0, a], F : GrK ³ Rn have closed, convex values and let F satisfy
||F (t, y)|| ≤ α(t). Let F (·, y) be measurable for any y ∈ Im(K) and let for
almost all t ∈ T and for every y ∈ K(t)

∀β > 0, DK(t, y)(1) ∩ lim inf
h→0+

1
h

t+h∫

t

F (s, y + βB)ds 6= ∅. (3.3)
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Then for every t0 ∈ T and y0 ∈ K(t0) there exists a solution y(·) to (2.1) defined
on [t0, a] and satisfying y(t) ∈ K(t) for every t ∈ [t0, a].

The next result which deals with problem (2.1) is the theorem presented by Hu
and Papageorgiou [10]. The authors give sufficient conditions assuming that K is
u.s.c. and the orientor field F defined on the graph of K is jointly measurable and
u.s.c. w.r. to y.

Theorem 3.5. [10] Let K : T ³ Rn with nonempty closed values be an u.s.c.
set-valued map such that for almost all s ∈ (0, a) and for all y ∈ K(s), there is
a continuous map t → y(t) on [0, s] or [s, a] such that y(s) = y, DK(·, y(·)) is
closed at s. Let F : GrK ³ Rn with closed convex nonempty values satisfy

(i) F is jointly measurable;
(ii) ||F (t, y)|| ≤ α(t)(1 + ||y||) a.e. on T with α ∈ L1(T );

(iii) y p³ F (t, y) is u.s.c.
Finally, let

F (t, y) ∩DK(t, y)(1) 6= ∅
for every [t, y] ∈ GrK. Then for every (t0, y0) ∈ GrK the multivalued Cauchy
problem (2.1) has a viable solution y : [t0, a] → Rn which is an absolutely
continuous function.

All above theorems on the viability of differential inclusions use the contingent
derivative as a main tool in the tangential condition. However, only its value at
t = 1 is used in this condition. Our idea was to use for the first time in viability
theory another tool of differentiation: GDQs. One of the advantages of GDQs
over the contingent derivative is that, as Example 2.6 shows, SGDQ contains all
important directions while the contingent derivative has, besides these directions,
some superfluous elements.

Theorem 3.6. [15] Consider the multivalued Cauchy problem (2.1). Assume that
K : T ³ Rn, where T = [0, a], is a left u.s.c. multifunction with nonempty
closed values such that for all (t, y) ∈ GrK, where t ∈ [0, a), K is GDQ
differentiable at (t, y) in the direction of R+ and for every ε > 0 there exists
Tε ⊆ T such that λ(T\Tε) < ε and the map (t, y) p³ SGDQ(K; t, y;R+) is
u.s.c. on (Tε × Rn) ∩ GrK. Let F : GrK ³ Rn with nonempty closed convex
values satisfy
(a) ∀ γ(·)-measurable t p³ F (t, γ(t)) is measurable;
(b) y p³ F (t, y) is u.s.c. for every t ∈ [0, a];
(c) ||F (t, y)|| ≤ α(t)(1 + ||y||) a.e. on T with α ∈ L1(T ).
Additionally, assume that F (t, y) ∩ SGDQ(K; t, y;R+) 6= ∅ for almost every t,
(t, y) ∈ GrK. Then for y0 ∈ K(t0), problem (2.1) has a solution.

Proof. For the proof see [15].
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Remark 3.7. In the above theorem the assumption on K to be GDQ-differentiable
at every (t, y) ∈ (T × Rn) ∩ GrK is important. Indeed, let T = [0, 1] and
y : T → R be the Cantor function. Thus y is continuous, nondecreasing, ẏ(t) = 0
for almost every t ∈ T , y(T ) = T , and y(·) is not absolutely continuous. Let
K(t) = {y(t)} and F (t, y) = {0}. Then the tangential condition is satisfied for all
t ∈ T\N , λ(N) = 0, such that ẏ(t) = 0. However, problem (2.1) has no solution,
since 0 /∈ K(t) for t > 0.

The main goal of this section, besides presenting a few viability theorems, is to
compare them with our Theorem 3.6. We compare only those theorems that deal
with a time-dependent constrain multifunction.

3.1. Tangential condition

The main difference between Theorem 3.6 and others is, as it was mentioned
before, that we use GDQs theory instead of the contingent derivative to formulate
the tangential condition for problem (2.1). Namely,

F (t, y) ∩ SGDQ(K; t, y;R+) 6= ∅ for almost every t, (t, y) ∈ GrK. (3.4)

In other theorems this condition is formulated as follows. In Theorem 3.3 there is
the strongest tangential condition,

({1} × F (t, y)) ⊂ TGrK(t, y) for all t ∈ [0, a)\N, y ∈ K(t),

({1} × Rn) ∩ TGrK(t, y) 6= ∅ for all t ∈ N, y ∈ K(t).
(3.5)

In Theorem 3.5 the authors put the “classical” tangential condition,

“for almost every t ∈ [0, a] and for every y ∈ K(t),
F (t, y) ∩DK(t, y)(1) 6= ∅.” (3.6)

Finally, in Theorem 3.4 the authors assume the following:

“for almost all t ∈ T, for every y ∈ K(t)
∀β > 0, DK(t, y)(1) ∩ lim infh→0+

1
h

∫ t+h
t F (s, y + βB)ds 6= ∅.” (3.7)

Remark 3.8. There are the following relations among the above conditions:

(3.4) ⇒ (3.6),
(3.5) ⇒ (3.6),
(3.7) ⇒ (3.6).

Indeed, in (3.4) we intersect F with, possibly smaller than the contingent derivative,
the closed union of minimal GDQs of K. In (3.7), the authors intersect DF (t, y)(1)
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with, smaller than F (t, y), the set lim infh→0+
1
h

∫ t+h
t F (s, y + βB)ds. The

conditions (3.4), (3.5), and (3.7) are not comparable.

Remark 3.9. The authors of Theorem 3.4 proved also another viability theorem
in [6]. They showed that for K : [0, a] ³ Rn left absolutely continuous and
F : [0, a]×Rn ³ Rn with closed convex values, continuous w.r. to y, measurable
w.r. to t and bounded as in Theorem 3.5, the tangential condition (3.6) is equivalent
to the existence of a viable solution to problem (2.1). As we can see, they weaken
the tangential condition making stronger the continuity assumption on F .

3.2. Assumptions on K

There are different assumptions on a constraint multifunction K in theorems
presented above. In Theorem 3.3, the author requires K to be a left u.s.c. set-valued
map with closed convex values such that the interior of K(t) is not empty a.e. in T ;
in Theorem 3.4, K has to be a left absolutely continuous multifunction with closed
values on T = [0, a]; in Theorem 3.5 the authors want K to be with nonempty
closed values; be an u.s.c. set-valued map such that for almost all s ∈ (0, a) and
for all y ∈ K(s), there is a continuous map t → y(t) on [0, s] or [s, a] such that
y(s) = y, DK(·, y(·)) is closed at s; and in our Theorem 3.6, K is required to be a
left u.s.c. multifunction with nonempty closed values such that for all (t, y) ∈ GrK,
where t ∈ [0, a), K is GDQ differentiable at (t, y) in the direction of R+. The
weakest continuity assumption is left upper semicontinuity. Indeed, it is obvious
that every u.s.c. set-valued map with compact values is left u.s.c., but the converse
is not true as the following example shows.

Example 3.10. Consider the set-valued map F : R ³ R defined as follows:

F (x) =

{
0 if x ≤ 0,

[0, 1] if x > 0.

Then it is left u.s.c. at 0, but not u.s.c. at this point.

One can also observe that

Remark 3.11. If a set-valued map K : T ³ Rn with values contained in a compact
set C is left absolutely continuous on T , then it is left upper semicontinuous on T .
Indeed, it is enough to consider for every τ0 ∈ T one of intervals from the definition
of left absolutely continuity instead of the union of intervals, i.e.:

τ0 − t0 ≤ δ ⇒ 4(K(t0) ∩ P, K(τ0)) ≤ ε,

which implies left upper semicontinuity of K at every τ0 ∈ T if we put P = C.

We also assume that a constraint multifunction K is GDQ-differentiable at
every (t, y) ∈ GrK. In [13] the following proposition is proved.
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Proposition 3.12. If K is GDQ-differentiable at (s, y) in the direction R+, then
there exists a map γ : [s, s + δ] → Rn such that γ(t) ∈ K(t) for t ∈ [s, s + δ],
γ(s) = y and γ is measurable and continuous at s.

By the above proposition, if we assume GDQ-differentiability of K at every
point (t, y), there exists a measurable map γ(·) starting at this point. Hence we do
not assume additionally the existence of such a map, as it is done in Theorem 3.5.

3.3. Assumptions on F

In all theorems presented above F is closed, convex-valued. But there are
different hypotheses on the measurability and bound of F . In Theorem 3.3 and
Theorem 3.4, F is required to be measurable with respect to t. In Theorem 3.5,
F has to be jointly measurable and in our Theorem 3.6 the following is required
to be fulfilled: ∀ γ(·)-measurable, t p³ F (t, γ(t)) is measurable. The strongest
assumption is joint measurability of F in Theorem 3.5. This assumption implies
ours. In turn, our assumption implies the weakest one, i.e. the measurability of F
w.r. to t as it is requested in Theorem 3.3 and Theorem 3.4. The price of making
weaker assumptions on the measurability of F is the necessity of putting stronger
assumptions on bound of F (or on something else). And so, in Theorem 3.4, one
can find the strongest bound hypothesis, ||F (t, y)|| ≤ α(t) with α ∈ L1(T ), in
Theorem 3.3 there is the strongest tangential condition and K is required to have
nonempty interior. Besides Theorem 3.4, in all other presented theorems there is a
weaker hypothesis on a bound of F , namely ||F (t, y)|| ≤ α(t)(1 + ||y||) a.e. on T
with α ∈ L1(T ). To see that these two assumptions are not equivalent, let us show
the following example:

Example 3.13. Consider the set-valued map F : [0, 1] × R ³ R defined as
F (t, y) = [− 1√

t
(1 + y), 1√

t
(1 + y)]. Then it is easy to see that ||F (t, y)|| ≤

α(t)(1 + ||y||), where α(t) = 1√
t

and so α ∈ L1(T ), but there is no such a map
α ∈ L1(T ) that ||F (t, y)|| ≤ α(t).
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Ülevaade vitaalsustulemustest
Ewa Girejko ja Zbigniew Bartosiewicz

Saadud tulemusi, milles on esmakordselt kasutatud vitaalsusteooria üldistatud
diferentsiaalfaktoreid, on võrreldud varasematega. Võrdlust on illustreeritud
näidetega.
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