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Abstract. The paper considers the output zeroing problem for discrete-time nonlinear

system with measurable input disturbances. The pbjective is to identify, if possible, the

set of all pairs consisting of an initial state and -a control sequence, which produce an

identically zero output for the given disturbance sequence. For this purpose the zero

dynamics algorithm is generalized for discrete-time nonlinear system with measurable

input disturbances. Under some mild regularity assumptions, the local solution around

an equilibrium point of the system is derived on the basis of zero dynamics algo-
rithm. -

1. Introduction |

The system zero dynamics represent the nonlinear analogue of the

zeros of the transfer function of a linear system, and are defined as the

internal dynamics arising in a system when control seguence and initial

conditions are chosen so as to constrain the output to remain zero for some

interval of time. The concept of zero dynamics has been introduced by
Byrnes and Isidori ['] for continuous-time nonlinear systems, and gene-
ralized by Monaco and Normand-Cyrot [?] for discrete-time nonlinear

systems. Nonlinear systems with zero dynamics asymptotically stable at

a given equilibrium point are called minimum-phase systems ['~°].
The concept of zero dynamics has proven to be important through

its applications to different control problems. One of the examples is

the output reproducibility of a given trajectory. In [*], a simple condition

for solvability of this problem and the associated control law is derived

on the basis of the zero-dynamics algorithm. Moreover, if these condi-

tions are not satisfied and/or some uncertainties are present, sliding
control is shown to perform asymptotic tracking whenever the zero

dynamics of an extended system related to the given system and to, the

reference trajectory. satisfies certain stability properties. Another example
is the output regulation problem, that is the problem of controlling a

plant in order to have its output tracking (or rejecting) reference (or
disturbance) signals produced by some external generator (the exo-

system). The solvability conditions of this problem have been formulated

[°] in termsof properties of the zero dynamics of a composite system
whose output is defined as tracking error and which incorporates the

plant dynamics as well as the exosystem dynamics. The third example
is the system stabilization. It has been shown [°] that, if the system
with the same number of inputs and outputs has a zero dynamics which

is asymptotically stable at an equilibrium point, it .is always possible
to find a smooth state feedback that asymptotically stabilizes the system
even in the case of systems whose linear approximation has uncontroll-
able modes associated with eigenvalues on the imaginary axis.
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The serval alternative algorithms to compute the zero dynamics for
continuous-time nonlinear system have been presented in [*7]. For
discrete-time nonlinear system, the zero-dynamics algorithm has been

presented in [?].
The objective of this paper is to generalize the zero-dynamics algo-

rithm for discrete-time nonlinear systems with input disturbances.
Besides its immediate importance for solving the output zeroing problem
for nonlinear systems with input disturbances, in terms of this algorithm
the necessary and sufficient conditions for the solvability of the strong
model matching problem [®], and the exact model-matching problem
from the origin, can be given [°]. :

2. Locally maximal output zeroing submanifold

Consider the system

x(t+l)=f(x(t), u(t), @(2)), — х(0)= , (1)
y(t)=h(x(t)),

where the states x(-) belong to an open subset X of R”, the controls

u(-) belong to an open subset U of R™, the measurable disturbances

w(-) belong to ап open subset W of R" and the outputs y(-) belong
to ап open subset Y of RP. The [ and h are supposed to be smooth

(i.e. C*) mappings. We are assumed to work in a neighbourhood of an

equilibrium point (x°, «° w°) of the system (1) (I.е. [(х°, и°, ш°)==х°),
for which the following equality holds: A(x°) =O.

In this paper, we shall discuss the problem of how the output y(?)
of the nonlinear discrete-time system of the form (1) can be set to zero

by means of a proper choice of the initial state x, and control input
u(t). If the initial state of (1) is equal to x° the control input u(f)=u°
for all £=o, then also the output y(f) is zero for all £Z=O. Our purpose
is to identify, if possible, the set of all pairs consisting of an initial
state xo and a control sequence {u(f{), {=o}, which produce an identi-

cally zero output for the given disturbance sequence {w(¢), {=o}. Let
us first introduce some terminology.

Let M be a smooth connected submanifold of X which contains the

point x°. The manifold M is said to be locally controlled invariant at

х° Н there exist the neighbourhoods X° of x°, W° of w° U° of w° апа а

smooth таррте а: Х°°— U° such that f(x,a(x,w),w) =M for all

xe MO X° and for allw=W°. ; ;
An output zeroing submanifold of (1) is a smooth connected sub-

manifold M of X which contains the point х° and satisfies

(i) for each x=M, h(x)=0;
(Н) М 5 а locally controlled invariant at x°.

In other words, an output zeroing submanifold is a submanifold M
of the state space with the property that — for some choice of feedback
control a(x,w) — the trajectories of the closed loop system

x(t4l)=f (x(?), a(x(f), w(7)), w()),
y(t)=h(x(t))

which start 10 М stay in M for /<fr (for some finite {r), and the

corresponding output is identically zero for ¢<Ctr.
If M and M’ are two connected smooth submanifolds of X which

both contain the point x°, it 15 said that M locally contains M’ (or, M
coincides with M’) if, for some neighbourhood X° of x°, MNX°>M’ X°
(or MNX°=M’NX°. An output zeroing submanifold M is locally
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maximal if, for some neighbourhood X° of x° any other output zeroing
submanifold M’ satisfies M X° >M’ (1 X°. The locally maximal output
zeroing submanifold M is called the (local) zero-dynamics submanifold.

In general, it is not clear whether or not the local zero-dynamics
submanifold might exist at all. However, under some mild regularity
assumptions, in a neighbourhood of x° the zero-dynamics submanifold

L* — if it exists — can be found by the algorithm presented in the

next section and called the zero-output constrained dynamics algorithm,
or, in short, zero-dynamics algorithm. The algorithm we present is a

generalization of the zero-dynamics algorithm for discrete-time non-

linear systems presented in [?] to the case of systems with measurable

input disturbances. Note that this algorithm is quite similar to the struc-
ture (inversion) algorithm [!°].

3. Zero-dynamics algorithm

Consider the system (1) and assume that (x° «° w°) is an equilibrium
point of (1) also satisfying A(x?%)=o.

Step 1. Assume that the function Ag=h has constant rank s, in a

neighbourhood of х° in A~!(0). Define op:=S,. Then, locally, Lo:=
=h"1(0) is a (n— o0o)-dimensional subset of X. Let x=(x;, %) be

an adapted coordinate system around x° such that locally Lo={x|x=
=o}, and let f be partitioned accordingly:

[y (x,, %, u, @)
ГС “'“'):[h <, Зь и ©) ] Е (2)

Let us denote the equilibrium point in this new coordinate system by
(x5 79, u w?). - ‘

The constraint y(¢)=o for all ¢ implies x (f)=o for all ¢, and hence

X (t4l)=f,(0, %(t), u(t), w(t))=0.

Define x}({~+ 1) = x;({+1) апа Fo(0, &, u, w) = [(0,7, u, w). In

these notations the last equation takes the form

X 3 (t41)=Fo(0, %(t), u(t), w(t))=0. (3)

Assume that the rank of the matrix

д

'Ы-Ро(о, žl, u, Ш)

is constant, say ro, around (%9, u°, w°).
If the equation (3) can be solved for u(f) (the sufficient condition

for this is Го==so)
u(t)=eo(z (t), w(t)), (4)

then the algorithm stops because L, (around x°) is clearly the set we

are looking for. Really, the feedback control (4) is such as to keep in L
the trajectory starting from any point of Lo, and the system.

Zi(t4+l)=(H(o,Z.(f),9(Z(1), w(t)), w())

characterizes the zero-output constrained dynamics. In this case, we may
still set, formally, L,=L,. 3 _
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If the Eq. (3) cannot be solved for u(f), then permute tempor-
arily, if necessary, the components of Fo(-) so that the first r, rows of
oFy(+)/0u are linearly independent. Decompose x,(t+l) and Fo(-)
according to

*

(& otsen=[2Eo] A= [
where xj (£4l) апа Fo(-) consist of the first ry elements. Since the

last rows of OFy(-)/0u are linearly dependent on the first ro rows, we

can write

Xy, (t4l)=Fo (0, & (), u(t), w(t)),

x5, (1)=Ro(x3, (14-1), & (1), w (1)).

The first components of xj(¢+l), that is x} (4+l), can be made zero by
suitable choice of the control. The ‘last Sop—ro components of x*(/+1),
that is x{,({+l), 90 not depend on the control, and so (3) clearly

implies that the following equality has to hold for every w(f) & W°

( )( l(t)yO\Y,Х 1)(.._.R w

If it is possible to find a solution with respect to #, of the equation

Ro(O, fl, w) =0

which does not depend on w, then define A,(%;) as the left-hand side of
this solution in the implicit form A, (&,) =O.

If it is not possible to find such a solution, then the system (1) with
disturbances does not have the zero dynamics, and the algorithm stops.

И the solution A,(%,) exists, it can be found in the following way.
For the r-dimensional vector w, let w!l denote the following b ]
dimensional vector

[] — Г! -1 -1 1—2402 1-2
@ [wl, My s BTN, Wt WLW, -..

5., w’l"-’w2wr, i wf]T.

In a neighbourhood W° of w° the components RS (s=l,
...,

$0 — о)
of the nonlinear vector-valued function R, can be represented in terms
of the Taylor series expansion

R(s) (0, &1 w) =Räo (žl)[—f- ZR';I (žl) (w — w°)[‘l.
=1

Define the vector-valued function A,(%;) as the one formed from the

independent (over the field of analytic functions of #,) components of

К› Кsр (221, s==l, ...,50— Го.

Note that A, (%,) is not identically zero, because otherwise (3) would
be solvable for u(f).

Step 2. Assume that the thus obtained additional constraint A,(%)
has constant rank s, around #). Define o0,:=so+s;. Then, locally,

Ly:=A'(o) is a (n— 0;)-dimensional subset of L, Note that L,
contains x% A, (Z9)=o.

Choose the local coordinates ¥I=(x,%) on L, with dimx =s,
such that locally L,={x|x, =O, x,=o}, and let | be partitioned accord-

ingly:
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;'[‚)_(х‹’)› х;я 5529 u’ w)
f(x, 4 w)=lF(x), x žy 4 w)|. (6)

f2 (xz), x,l) 527 и’ w)

The constraints y(¢) =O, A (Z;(¢))=0 for all ¢ now imply x({) & L, for

every ¢, that is x| () =O, x| ({)=o for all ¢ and hence

Xy (t+l) =T, (0,0, Z2(2), u(?), w(1) )=O,

%, (t+l) =F, (0,0, F2(1), u(t), w()) =O,

or in the matrix form,

x*(t+l)=F,(o,o, F2(t), u(t), w(t)) =O. (7)

Assume that the rank of the matrix

д

E;FI (0: 09 žž, u, w)

is constant, say r;, around (%9, и?, @°).

If the Eq. (7) can be solved for u(f) around (x° u° w°) (the
sufficient condition for this is ri=a)

u(t)=9q(x:(t), w(t)), (8)

then the algorithm stops, because L, (around x°) is clearly the set we

are looking for. Actually, the feedback control (8) is such as to keep in

L, the trajectory starting from any point of L,, and the system

To(t+l)=f2(o,o, Z2(t),@(Z2(t), w(t)), w(l))

characterizes the zero-output-constrained dynamics. In this case we may
still set, formally, Lo=L,.

If the Eq. (7) cannot be solved for u(f{), then permute tempor-
arily, if necessary, the components of F,(-) so that the first r, rows of
the matrix õFl(—)/õg are linearly independent. Decompose x7(f+4l) апа

Fy(-) accordingly:
*

(& л— Fu(')]aern=[20] no-[2O
where x} (/+1) апа Fy(-) consist of the first r; elements. Since the

last rows of OF,(-)/odu аге Ппеаг!lу dependent on the first r, rows, we

can write -

(7)),#) , ©0, Zo(1), ul((0,0,Fll1)=xi (t+

x5, ((+1) =R (], (1+1), Z2(2), w(t)).

So (7) clearly implies that for every w(¢) c W

R(0, žo(t), w(t) ) =O. (9)

If it is possible to find a solution with respect 10 #; of the equation

Rl (0, 52› w) =0

which does not depend on w, then define Ay(%;) as the left-hand side of
this solution in the implicit form Aq(%) =O.
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. If it is not possible to find such a solution, then the system (1) with
disturbances does not have the zero dynamics and the algorithm stops.

If the solution 2y(Z:) exists, it can be found @ the following way.
In a neighbourhood W° of @°, the components Rf (s=l,

..., So+81—71)

of the nonlinear vector-valued function R; can be represented in terms

of Taylor series expansion

К5 (0, %y, w) =R, (%2) +3 RS, (ž2) (w — ш°) 0.

[>l

Define the vector-valued function Ay(Z:) as the one formed from the

independent (over the field of analytic functions of #;) components of

К, К, (221, s==1, ..., 505— П..
:

Note that Ay(&;) is not identically zero because otherwise (7) would

be solvable for u(t). '

Step k. Suppose that in step & —1, Ax—; has been defined so that

Ar-I(Ze-1) has constant rank 5к around x 9 . Define ок— :==

= So+Sl+ ... +Be—l. Then, locally, Le—:=2;! (0) is a (n—orl)-

dimensional subset of Lr—;. Note that Le—, contains Ю:Лк (%% _,)=o.
Choose local coordinates #e—=(x),_,,&:) on Га with @т х =

=sp— such that locally Lg—={x|x,=o, x;=0,..., x, =o}, and

let [ be partitioned accordingly,
,

i

Г(&

‚

го’
x

Iw)=
l(x,

e

.

0’ x,l’
‚ x,k

L

ПИ

°
(x,

j | k—l)

~,k,
u, w

| X

fk (х‚О‚
O;’x’l’ ..

° .

k’ u)
w)

ПЫ

3 x,k
*

)

-
3

_р
€

ID

&
ž

Ё’ u, w)'
‚ & W)

The constraints y(¢)=o, M(Zi(f))=o, ..., Ae—l (Fe—l({))=o for all Z

now imply x(f)& Le— for every ¢, that is x(£)=o, x ({)=o, ...

..y X, (£)==o for all ¢ and hence

x (t4+l)=f,(o, ..., 0, Zx(t), u(t), w(t))=0,

£ (1) =F(0, ..., 0, Z(t), u(t), w(t))=0,

X, (@lO =f_, (0, ..., 0, Ze(t), u(t), w(t))=0,

or in the matrix form,

Xy (t4l)=Fpy(0, ..., 0, Zn(t), u(t), w(t))=0, (10)

where x;_l (t+l) and Fi—, have og—l:= So+Sl+ ... +S—; elements and

Zr denotes coordinates on L,_,. Assume that

—Q-—Fk_l(O,
eea 0, žk, u, Ш)

ди

has constant rank r,—, around (3%, u° ш°).

If the Eq. (10) can be solved for u(f) (the sufficient condition for
this is rk——l=o'k-1)

u(t)=o(Ze(t), w(t)), В (11)
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then the algorithm stops, because Lr—; (around x°) is clearly the set we

are looking for. Actually, the feedback control (11) is such as to keep in

Lx—; the trajectory starting from any point of Le—;, and the system

Fr(t+l) =[x(0, ..., 0, Zx(t), ф(& (0), @w(f)), w(?))

characterizes the zero-output constrained dynamics. In this case we may
still set, formally, Ly= L.

If the Eq. (10) cannot be solved for u(f), then permute tem-

porarily, if necessary, the components of F.—(-) 50 that the first

re—; rows of the matrix oFg—(-)/0u are linearly independent. Decom-
pose x* (¢+l) and Fr—y(-) accordingly: ; ;

Fk—l,l(")]x:—l,l (t+l) ] , Fk—l(')=[Fk—l,2(')** (""1):[›‹;_1‚2(‘“)
where x}| (¢+l) and Fe-11(-) consist.of the first r, elements. Since

the last rows of 9Fx—;(-)/0u are linearly dependent on the first re—

rows, one can write

w(f)),0, Ze(t), u(?),1(0,...,—Fk-—l,1)=Xa E+

x* j+=Re(x;_, (ННI), &(0, ®(2))

So (10) clearly implies that

Ri-1(0, Z: (1), w(t))=0 (12)

for еуегу @ (7) c€ №°. |
-

If it is possible to find a solution with respect to Ze of the eguation

R:(0, Zr, w)=o,

which does not depend оп w, then define A.(Zx) as the left-hand side of
this solution inthe implicit form A (Z:) =O.

If it is not possible to find such a solution, then the system (1) with
disturbances does not have the zero dynamics, and the algorithm stops.

If the solution A.(F) exists, it can be found in the following way.
In a neighbourhood W° of @° the components RS&= (s=ll, ...

...,
Og—l—Tr—) of the nonlinear vector-valued function Rz—; can be

represented in terms of Taylor series expansion

Rs,_, (0%, w)=R;
|

(Zx)+ RS, (%) (w— wY)
11

Define the vector-valued function A.(Zx) as the one formed from the

independent (over the field of analytic functions of %;) components of

КЁ—]‚О’ К;_…‚ 121, S=], +, Ок —ee

Note that Ar(žr) is not identically zero because otherwise (10)
would be solvable for «(¢). If one assumes that A» has constant rank se

around žg and 4еПпез сь:==505 ...+5, then this constraint

yields locally the (n— ok)-dimensional subset L.:=2.'(o). End of the

kth step.
We summarize the constant rank assumptions made in the above

algorithm in

Definition 4. An isolated equilibrium point (x° u° w°) with

h(x°)=o is a regular point for the zero-dynamics algorithm if for each

k=o the mapping i and the mairix OF.(-)/0u have constant rank
around (x°, u°, w°). .
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If (x°u% w° is a regular equilibrium point for the zero-dynamics
algorithm, then it easily follows that the algorithm terminates after
k*<n iterations. Actually, if at a kth step Ax is not identifically zero on

Г1 апа Lk=A;' (0) is a smooth manifold, then dim Lr<<dim L.
The algorithm stops if one of the following cases occurs.

I. R,,(0,%,,, w)=o is not solvable.

Then the system (1) does not have the zero dynamics.
2. L, ={x.
Then the system (1) has the trivial zero dynamics.
3. L,,=L,,, withdimL ,0.
Then L

,
is the zero-dynamics submanifold. :

The zero dynamics is either an autonomous system ог а control
system on L,,, depending on the number of solutions of the eguation

F
r j(0, +, 0, Z,., 4, w)=o (13)

with respect to «. If the Eq. (13) has a unique solution Ф(#,. (2), © (5)),
then the zero dynamics are formed by the following autonomous system

(+l)=f.(o, ...,
0, %, (), oF, (), w(t)), ® (7)).

If the solution of the Eq. (13) can be written as a family of
functions ¢(Z,,(¢),w(¢),v(f)) parametrized by a vector v(f) =R™,

m,<m, then the zero dynamics are formed by the following control
system

¥.(t+1)=f,0,...,0, %, (), o, (1), @(2), v(t)), w())

with control inputs v(¢). The latter can happen, for example, in the case

of a nonsquare (i.e. the system of less outputs than inputs) system.

4. Examples

We illustrate the results of this paper with the aid of some simple
examples.

Example 1. Consider a system of the form (1) with 2 control

inputs, 1 disturbance input and 2 outputs, defined on R* with

Xo+w
@)== ХЁИ]f(x,u,

:

=XI,h](X)v—

|hz(X)=x3

Proceeding with the zero-dynamics algorithm, we see that A¢(x)=
=h(x) has rank 2 for all x. Thus so=2 and

Го== {х & R*| x,=x3=o}.

The constraint y(¢) =0 for all £ implies that the following equalities have
to hold for every w(t):

X 2 (t) +w ()=O,
x.;(t)==o.
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Of course, it is not possible to find a solution of this system of equations
with respect 10 xo and x4, which does not depend on w, and the algo-
rithm terminates. Consequently, this system does not have the zero

dynamics.

Example 2. Consider a system of the form (1) with 2 control

inputs, 2 disturbance inputs and 2 outputs, defined on R* with

x2wl‘4_’+'—xlilwz+x3ul ]XoX3
=

Uy

1yhi (x)=x

Й» (Х) == Хо.

Proceeding with the zero-dynamics algorithm, we find so=2 and

Lo={x € R*| x;==x,=o}

The constraint y(#)=o юг аП # implies that the following equalities
have to hold for every w(?):

x1(t41) =u,(t) =O,
Xo(t41) =x4(t)wa(f) +x3(t)u,(t)=o.

The matrix

о]
has rankro=l for all x& L, and the algorithm can be continued. Only
x1(t+1) can be made zero by the suitable choice of control u,(¢)=o,
but to makeх» (#-+-1) equal to zero, the equality

x4(t) tw>(l) =0

has to hold for every w(¢). Thus A;=ux,, s;=l and

Li={x € R*| x;=xy=lx,=o}.

The constraints y(#)=0 and A,({)=o for all ¢ imply that the following
equalities have to hold

X 1 (t+l) =u, (t) =O,

Xg(t+l)=x3(t)u, (1) =0

X4(t+l) =х3(і)=o

The matrix

1 0

0F1()_ X3 0

du
>

|0 0

has still rankr;=l for all xeL,. Provided x({) =L, x,({4+l) and

X 2 (t+l) can be made equal to zero by the suitable choice of control, but
to make x4(¢+l) equal to zero, x3=o has to hold.

Thus Ae=x3, sо==1,

L= {x & R | x;=xy=x3=x4=o} = {o}
and therefore the algorithm terminates. The system has the trivial zero

dynamics,
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Example 3. Consider a system of the form (1) with 2 control

inputs, 1 disturbance input and 2 outputs, defined on R* with

x3i +]n 4

Х, — U —ln w
[(x, , w)= [wx,—}—sin X4 ]

хз — xl+ui+2lnu+w

hl(x)l=x1,

ho (x) = Хо.

Proceeding with the zero-dynamics algorithm, we find so=2 and

Го== {х € R*| x;=x,=o}.

The constraint y(f)=o for all ¢ implies that the following equalities
have to hold .

x 1 (1) =x3(¢) +ui (t)+ln uz (£)=O,
Xo(t+1) =x4(t) — u (1) — п и» (7) ==o.

The matrix

1
]

—;2—
—]

OFy(-)
—

_
-

ди

has rankro=l for all x&L, and the algorithm can be continued. Only
x1(t+1) сап be made zero by the suitable choice of the control,
u, () +lnus(t) =—x3(t), but to make xo({+1) equal to zero, the equality

X4(t)+x3(t)=o

has to hold. Thus Ay=ux3+xs, s;=l and in the new coordinates

(22== Хl, 29=X3, 23=X3+X4, 24=1X4)

Ll= {Z = R4|2l<=22=Z3=o}

The constraints y(¢)=o and A,(¢)=o for all ¢ imply that the following
equalities have to hold

21 (t4l) =—2z4(¢) Hui () +ln uy() =O,

29(t+1)=24(t) +ui () — Inuy(f) =O,

23(t41)=—24(t) +sinz4()+u ()+2 In us(t)4w () =O.

The matrix

jo 41
Us

О

дВ,(.)
— —1 1

ди
—

U

" oA
Uz

has now rankr,=2 for all z L, and the algorithm stops, because L,
is the zero-dynamics submanifold. The system

24(t41) =sin 24(%)

characterizes the zero-output constrained dynamics.
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Example 4. Consider a system of the form (1) with 2 соп{го!

inputs, 1 disturbance input and 2 outputs, defined on R* with

X2+Ul

Hx, u w) =[žžxs-l—xaul ]
x3+w

hi(x)=%x,

ha (x) = xo.

Proceeding with the zero-dynamics algorithm, we find sp=2 and

Го== {х © К*|х,== хо==o}.

The constraint y(¢{)=o юг all ¢ implies that the following equalities
have to hold

ul(t)-=0, -

14

x3(t)u,(t)=o. ; '9

In spite of the fact that the matrix

dFo__[l o]
ou х0

has the rankro=l, the equations (14) can be solved for wu(f) (not
uniquely): u;(t) =O, us(t) is arbitrary. Therefore, the algorithm stops,
because L, is the zero-dynamics submanifold. The system

x3(t+l)=uy(t),

X4(t+l) =)C3(t)+W(t)

with the arbitrary wu(f) characterizes the zero-output constrained
dynamics.
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DISKREETSE MITTELINEAARSE SUSTEEMI NULLDUNAAMIKAST

SISENDHAIRINGUTE OLEMASOLUL

On kisitletud diskreetse ajaga mittelineaarse siisteemi viljundite nulliga vordsusta-
mise iilesannet juhul, kui siisteemi mojutavad moodetavad sisendhdiringud, ning uuri-

tud voimalust leida juhttoime tagasiside kujul oleku jdrgi, mis tagaks suletud siisteemi

viljundi vordumise nulliga. Sel eesmirgil оп iildistatud nulldiinaamika algoritm
diskreetse ajaga mittelineaarsetele hdiringutega siisteemidele. Algoritmi abil on leitud

nn. (lokaalne) nulldiinaamika alammuutkond ja vaadeldava iilesande lokaalne lahend

siisteemi tasakaalupunkti {imbruses. Ulesanne on lahenduv, kui siisteemi algolek asub

nimetatud alammuutkonnal. Ka tagasiside vorrandid on leitud nulldiinaamika algoritmi
abil. -

Юлле КОТТА

О НУЛЕВОЙ ДИНАМИКЕ НЕЛИНЕЙНОЙ СИСТЕМЫ ДИСКРЕТНОГО ВРЕМЕНИ

ПРИ ВХОДНЫХ ВОЗМУЩЕНИЯХ

Рассматривается задача обнулевания выхода нелинейной системы дискретного

времени при постоянно действующих измеряемых входных возмущениях. Изучается
возможность построения управления в виде обратной связи по состоянию, обеспечи-

вающего тождественно равный нулю выход замкнутой системЫ. С этой целью обоб-

щается алгоритм нулевой динамики для названного класса систем и на основе его

находится локальное решение задачи в окрестности TOYKH равновесия системы.

С помощью алгоритма строится т. н. (локальное) подмногообразие нулевой динамики.

Изучаемая задача имеет решение, если начальное состояние системы принадлежит к

подмногообразию нулевой динамики. Уравнения обратной связи найдены также как

результат применения алгоритма.
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