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ROBUST CONTROL FOR A CLASS OF LINEAR SYSTEMS

(Presented by U. Jaaksoo)

Abstract. A robust digital controller design procedure for a class of linear systems is
proposed following the modal control algorithm. This particular class of linear plants
is introduced by the use of a linear-fractional mapping on the system parameter space
which transforms the unit circle into itself. The proposed procedure is also suited for
designing a controller for a plant with parameter uncertainties in a fixed direction.

1. Introduction

Much attention has been paid to the design problems of robust control
systems and various design procedures_have been proposed for different
types of systems. A problem of current interest in the theory of robust
control is the stability of linear dynamic systems with structured pertur-
bations or uncertainties ['~%]. The Kharitonov’s theorems [*], which give
necessary and sufficient conditions for robust stability of Hurwitz
polynomials, are mainly applicable to continuous interval systems. To
obtain the robust stability conditions for discrete systems (Schur poly-
nomials) starting from the corresponding conditions for Hurwitz poly-
nomials, the bilinear (linear-fractional) mapping on the complex plane
is used which transforms the left half plane into the unit circle.

In this paper we will use a linear-fractional mapping with a free
parameter which transforms the unit circle into itself. On the one hand this
mapping does not alter the stability properties of a discrete system [5].
But on the other hand the free parameter variation in a fixed region
determines a class of admissible structured- perturbations of the plant.
Making use of the modal control algorithm, a robust digital controller
will be designed for this particular class of linear plants. The direction
of admissible variations of the plant parameters is determined by the
closed-loop poles. So we have to solve a problem of choosing the desired
closed-loop poles in accordance with the plant parameters uncertainties.

2. Problem statement

Let us consider a linear single-input plant in the state space form
x(t4+1) =Ax(t)+bu(t) (1)
fe==, 1, 2,..55

where x(f) is the n-dimensional state vector, and u(f) is the scalar
input variable. For simplicity of presentation, let us assume that the
plant model (1) is given in the controllable canonical form, i.e.
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Let us assume that the plant parameters vector a=(a,, ..., @.)7 is
uncertain in a fixed direction c=(cy, ..., ¢a)T, i.e.
a;(t)=ai+tc;, TR (2)
We have to find such a state feedback
u(t)=~r"x(t) (3)

that the closed-loop system
x(t+41) = (A+bk") x(1) (4)

will be stable for the nominal plant a=a(0) and insensible against the
plant parameters variations according to (2).

The idea of a solution to the above problem is the following. First
of all we will introduce a mapping with a free parameter £ on the par-
ameter space of the closed-loop system such that the stability is guaran-
teed for large variations of this free parameter. Next, we will define a
class of linear plants generated by this free parameter £ and show that
such a stationary state feedback exists that the closed-loop system will
be stable for all this class of plants. The defined class of linear plants
can be represented as a curve in the parameters space a(g) = R". We
have to choose such poles of the closed-loop system that the straight line
(2) fits into the curve a(g) for small &.

3. Stability of closed-loop systems

It is well known in the theory of discrete linear systems that the
poles A; of a stable system are placed inside the unit circle, i.e. |A| <1,

i=1, ..., n. The linear-fractional mapping
u:ei@ A—_g
1—Er

where AeC, pneC, t=C, op=R, E is the conjugate of & [&|<1
transforms the unit circle into itself [?], i.e. |pu]<<l if |A]<I.

As the poles of a linear dynamic system must be placed symmet-
rically with respect to the real axis, we will use the mapping

M=t

——1-—_——5};, i=‘1,...,ﬂ, (5)

i

where ¢ = (—1,1). Then to a real pole A; corresponds a real p; and to
a pair of conjugate poles A; and A; corresponds also a pair of conjugates

pi and pi.
Let

D(e)= 3 di
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be the characteristic polynomial of a stable closed-loop system. Then

it can be shown by the use of the mapping (5) that the class of poly-
nomials

E(z,5)= 3 ei(e)?,

where
A

am=3 3("~])( : ) ervi-2d, ©)

j=0 k=0

(;a) is the binomial coefficient, £ = (—1,1) is also stable [?].

4. Robust controller for a class of linear plants

If the plant (1) is controllable, then such a state feedback (3) exists
that an arbitrary prescribed set of closed-loop poles is available in the
unit circle [7]. Starting from the characteristic polynomial of the closed-
loop system D(z) by d,=1 and the equation (4), we obtain for a plant
in the controllable canonical form the following feedback gain vector

k{:di_l—ai, i=1, ceny n. ] (7)

Starting from the class of stable (Schur) polynomials E(2,§), E
e (—1, 1), we obtain

ki(E)=éi-1(E) —ai,
where
__e—1(§)

 en(E)

or, taking into account (6),

znr zjv(n'—f)(;e) gi+-2kd,

€i—1 ()

St L =) T

& () === '_nk , =0, ,..;n—1  (8)
3 eldy
en(§)=1. A
Let us now introduce a class of the following linear plants
a;(¢)=a;—di-1+ei-(8), i=l1,...,n. 9)
te (—1,1).

Taking account of (7) and (8), we can obtain that the feedback gain
vector

ki=d;_; — a(0) (10)

stabilizes all the class of plants (9) if only the polynomial D(2) is stable.
In other words, the controller (10) is robust against the plant parameters
variation according to (9).

The proposed robust controller has poor practical importance because:

1) the class of plants (9) is very specific,

2) the polynomial D (z) is not known,
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3) ;[t.he‘ coefficients dy, ..., dn—y must fit the plant parameters varia-
ion. :
Therefore we are looking for an approximate robust controller start-
ing from the known direction of the plant parameters variation.

5. Approximate robust controller design

Let us now consider the problem of the robust controller design stated
in the second section. We know the nominal plant (1) and the
direction of the plant parameters variation (2). We have to choose an
-approximate closed-loop polynomial D(z) in order to design a robust
modal controller for this plant.

We can find the tangent line to the curve (9) as a function of the

closed-loop characteristic polynomial coefficients do, ..., dn—y. Let us
denote i
da,-(E) =
=G | &> d o dn— .
dg d (g 0 1)

If the equalities
ci=d;(0; do, ..., dn—) (11)

hold, then the tangent line fits the line (2) because from (9) by E=D
we obtain a;=a;(0). We have to solve the system of the equation (11)
in respect to the coefficients d, ..., da—y of the polynomial D(2). If the
solution represents a Schur polynomial, then the problem is solved and
the controller can be found from the Eq. (10).

Ii none of the solutions to (11) is a Schur polynomial, we have to
choose such a Schur polynomial D(2) with coefficients do, ..., dn—
that the angle between the line (2) and the tangent line defined by
di=d;(0; do, ..., dn—m) is minimal. Then the feedback gain vector is

k,-=c7,-_1———a,-(0), i=l, ey
Example. Let us have a second-order plant
_Jo1 ] [0]
setn=[, o Jxo+[] s
with an uncertain parameter a; = (2,5; 3,5), i.e. ¢™=[0 c;] and ay(v) =

=3}1c. :
From (9) we obtain

ai(§) =%‘$_id%_do,
ay(8) =3 —d;+ dl+12_§_d;1—£_:_)§;;d'§2
and, according to (11), we have by §=0
_@;—éngdl(l —dg)=0,
_d_a;éi)'=2(do+l) — & =0,

The above equalities hold if dg=0,5¢;—1, di=0. -
The polynomial D(2) is stable if c; & (0;4). For co=1 we obtain from
(10) the controller £T=[—2,5; —3].
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6. Conclusions

A robust digital controller design procedure for a class of linear
systems has been proposed following the modal control algorithm. This
particular class of linear plants has been introduced by the use of a
linear-fractional mapping on the system parameters space. For the sake
of simplicity, a plant in the controllable canonical form has been con-
sidered. The proposed procedure is also suited for designing a controller

which is little sensible in respect to the plant parameters variation in a
fixed direction.
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Ulo NURGES
UHE LINEAARSETE SUSTEEMIDE KLASSI ROBUSTNE JUHTIMINE

On vaadeldud robustse diskreetse regulaatori siinteesi {ilesannet iihe lineaarsete
objektide klassi puhul. See klass on defineeritud murdlineaarse teisendusega siisteemi
parameetrite (pooluste) ruumis. On néidatud, et murdlineaarses teisenduses esineva vaba
parameetri § muutused piirides £ & (—1,1) ei pohjusta suletud siisteemi ebastabiilsust.

00 HYPTEC
POBACTHOE YMNPABJIEHUE KJIACCOM JIMHEHMHBIX CUCTEM

PaccmarpuBaercsi 3ajaua cHHTe3a poGacTHoro uHGPOBOro peryasitopa AJsi OLHOrO
Kjacca JIMHeHHBIX OGBEKTOB. ITOT KJacC JHHEHHBIX OGBEKTOB ONpeAeJeH ¢ NOMOIIBIO
JApo6GHO-JIHHEHHOro npeoGpa3oBaHHss B NPOCTPAHCTBe TNapaMeTpoB (MOJIOCOB) CHCTEMBL
IToxasano, yro BapHaumus cBoGOAHOro mapamerpa § ApoGHO-JHHeliHOro npeo6pasoBaHHA B
npeaenax § & (—1,1) He MpHUHHSET HEYCTOHYHBOCTH 3aMKHYTOH CHCTEMBI.
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