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1. Introduction ;

The birefringent fluid-flow method is one of the technigues for

visually investigating complex fluid-flow problems. The majority of the

existing visual techniques yield only qualitative information about the
fluid motion [!]. The flow birefringent method has been used for

quantitative studies of flow problems for almost forty years.
There are numerous publications related to flow birefringence. We

refer to the fundamental study of the flow birefringence phenomenon by
Pindera and Krishnamurthy [?], and to the rcview paper by Pih [3].
These papers also give rather complete bibliographies on the subject.

Most of the flow birefringence studies are devoted to the two-dimen-
sional laminar flow. However, some results have also been obtained by
investigating the two-dimensional turbulent flow [*].

As for the three-dimensional flow, the photoelastic scattered light
method has been used to investigate it by several authors [*~7]. How-
ever, the drawback in connection with the scattered light method is that
it is time-consuming; also it is difficult to make measurements auto-

matically. .
Integrated photoelasticity [®] is a nondestructive method for the

three-dimensional stress analysis in transparent specimens. It is based
on the measurement of the change in the polarization of light passed
through a birefringent medium. In the general case, the theory of

integrated photoelasticity is rather complicated. However, if birefringence
is weak, simple integral relationships can be used in determining the

stress field [°]. In the latter case, integrated photoelasticity may be

interpreted as tensor field tomography [!%!']. In comparison with the

classical, scalar field tomography [!?], tensor field tomography is more

complicated, but also more informative.

Tomographic methods have also been used in investigating fluid

and air flows [!3-16]. Since in these investigations flow is regarded as

a scalar field, only a few scalar characteristics of the flow, e.g. the
distribution of the average (scalar) refractive index, or of the extinction
coefficient, have been determined. An attempt to use tomography for
the study of the flow as a vector field, has not been successful ['7].

Integrated photoelasticity permits, in principle, to apply tomographic
techniques for tensor fields. That has already been demonstrated in

relation 'ю axisymmetric and nonaxisymmetric stress tensor fields

[1011:18] аl5O for the Kerr effect field [!% 2°].
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Since viscous flow is characterized by the distribution of the strain
rate tensor, an attempt to determine this field using tensor field tomo-

graphic techniques is a natural development in experimental flow

mechanics. '
The aim of this paper is to show how integrated photoelasticity can

be applied ininvestigating an axisymmetric laminar flow of weakly
birefringent fluid. |

2. Basic optical relationships

In the general case of passing the polarized light through a non-

homogeneous birefringent medium, the optical phenomena are compli-
cated [®]. However, if birefringence of the medium is weak, optical
relationships are much more simple [°]. Let us assume that the flow
is only weakly birefringent. In the latter case, using methods:of two-
dimensional photoelasticity one can measure on each light ray the

parameter of the isoclinic ¢ and optical retardation 6. These par-
ameters are related to the components of the refractive index “tensor” л),

п› апа п (in the plane perpendicular to the wave normal) through the

following relationships [9f:
8 cos 2=(ni— Поз) П, ° (1)

6 соs 2р==2/п @. (2)

Bearing in mind that birefringence of the flow is weak, these

relationships can be written as

l -

6 cos2o=s7—[ (e —em)l (3)

.

1
§ sin 2q>=?o—f ёl2 , - (4)

where no is the initial refractive index of the fluid, and &; is the
dielectric tensor. j

Let the optical effect be a function of the strain rates é,, [*?!].
That is,

;

5577 tii (od). (5)

This can be expanded by the use of Taylor series expansion to

give [?l]

1
p ~ .

s;;‹;'B:_'l=аобіН-аlеіл+агеиееы—і'азёіиёгтеті-!- i (6)

where the a;’s are constants and repeated subscripts imply summation.
This expansion can be contracted by the use of the Cayley-Hamilton
theorem [??]-

1 |
Н 2

?n—'Gi]=aoõij+aleij+'a2eikekj, (7)
0

where а75 are functions of the physical properties of the fluid and о!
the invariants formed from é;. Practically ;s can be assumed to be
constants. They are named flow-optic constants and are determined
experimentally.
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Eq. (7) reveals [?!]

*2‘-’11—0“ (811 — £22)=1 (éll — é22)iHao[ (éll4-€22) (€ll — éxn)H-€3,— €5l, (8)

“’:—' el2—=2al6:2+oa2[2 (611+822) 12+26e13632]. (9)
0 _

Let us assume, in the first approximation, that a;=o. Then Eqgs. (3)
and (4) can be written as

6 cos 2ср=аl] (én—-ézz)dl,' (10)

6sin 2q>=2alfél2 dl. | (11)

Egs. (10) and (11) are the basic optical relationships we are going
to use for determining the axisymmetric flow field.

3. Determining the axial velocity gradient

Components of the strain rate tensor é;; can be expressed as follows:

. дох доу ov, , дох ‚ ‚до,
хх=__—_,

>

=_—____—’
>

"_—___—_’ х
==— — _____’ 2 Xé

-
Eyy

3
b= ёо+ 3%

(12)

where о; are the components of the velocity vector.
Condition of incompressibility [%]

divo=O, (13)

or

avx avy Õvz '
a Spi A— 4

can be written as

éxx;+éyy+ézz=o, (15)

or

éxx=—éyy-‘—ézz. (16)

For a light ray passing the cross-section parallel to the y axls (Fig.l),
we can write Eqs. (10) and (11) as

6 cos 2p=al/ (Exx— Ezz) dy, ° (17)

õ sin 2p=2al f Exz dy. (18)

Fig. 1 shows geometrical notations in the cross-section of an axi

symmetric flow (coordinate z is along the axis of the flow).

Fig. 1. Cross-section of an axisymmetric
flow and geometrical notations.
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Relationships (16) and (17) reveal

; до до -
8 cos 2p=—aq,f (Eyy+2622) dy=—al f (-a—;-+2-b—;-)dy. (19)

Since on the boundary v,=o, Eq. (19) reveals

[ Dz
(20)6 cos 2<p=—2alf—ä-z-dy.

The latter equation shows that line integral of the velocity gradient
ov./0z can be calculated for any ray, using the measured values of ¢
and ö. Thus, determining dv./0z has been reduced to a problem of scalar
field tomography, and the field of dv./dz can be determined by using the

Radon inversion in Eq. (20). :

4. Determining the velocity field in the plane of the
cross-section of the flow

Let us assume that our flow is potential, i.e. irrotational. In this
case the flow velocity potential ¥ exists, i.e. the velocity components in

the cross-section can be expressed as

О\ oy——— — | 21

Taking into consideration Eq. (21), the incompressibility condition

(14) yields

> Y 2Y-— ди,
22);r 0

A

Since the distribution of dv./0z has been determined by using Eq.
(20), the flow velocity potential ¥ can be determined by solving the

Poisson Eq. (22) with the boundary condition 0¥/dr=o. The velocity
components can be calculated from the relationships (21).

5. Determining the axial velocity component v,

In the relationship (18) we have (Fig. 1)

éxz=érzCcOS 9. (23)

Now Eq. (18) can be written as

8 sin 29=2a, [ é,. cos 0 dl. (24)

From the latter equation, the distribution of é,, can be determined by
using algorithms elaborated in integrated photoelasticity ['':2¢]. The
shear strain rate é,, can be expressed in the following form

‚
до, ‚ до; |

erd—e—ä'z'i-lf—är—, - (25)

which can be written as

ov. .
до,

орера (26)
Here

v,==o,Cos 0-}v,sino. (27)
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Let us assume that photoelastic measurements are carried out in two
adjacent sections, a distance Az apart from each other. In the previous
Paragraph ме showed that velocity components v, and v, may be deter-
mined for any cross-section. Eq. (27) permits to calculate v,. Now from

Eq. (26) follows

0v»
‚

Ло,
——

гг
—- —_—— 28

ог Еа (28)

where Av, is the difference of v, in the two sections.
Since the right side of Eq. (28) is known, we can calculate the value

of the axial velocity component v.:

Vp=— fR( 6‚ —%) dr+C. ' (29)

The integration constant C is determined. from the condition

vz(R) =O. (30)

Thus, the velocity vector field can be completely determined in the

section under investigation. As a result of carrying out measurements in

a number of sections, the three-dimensional flow velocity field can be

reconstructed.

6. Experimental considerations `

A schematic diagram of the experimental setup is shown in Fig. 2.

The flow test channel must be made of glass which is free of bire-

fringence. Besides, the flow test channel must be placed in an immersion

bath to avoid refraction of light (Fig. 3).

Fig. 2. The fluid circulation system and the polariscope: L — light source, D — diffusor,
P — polarizer, C — compensator, A — analyzer, CCD — a CCD camera feeding data

into a PC.

Fig. 3. The flow channel should be placed
in an immersion bath to avoid refraction

of light,
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Different polariscopes can be used for recording the photoelastic data.
For this purpose it is most convenient to use a computer controlled

polariscope with a CCD camera. |
The method described in this paper requires the measurement of the

parameter of the isoclinic ¢ and of the optical retardation & in sections

under investigation. To calculate this data all over the field, in a polar-
iscope with a CCD camera, light intensity patterns should be recorded

for several positions of the polarizer, analyzer and compensator (this
is the so-called phase-stepping method [?5%6]). These measurements take

a few minutes. Therefore, the flow should be sufficiently stable.

Finding a suitable immersion fluid to match the refraction index of

the flow channel glass, should present no problems. It may be more

difficult to make birefringent fluid with the same index of reiraction as

that of the flow channel glass. In principle, it is possible to take into

account the difference between the refractive indices of the fluid and of

the flow channel [?7].

7. Conclusions

This preliminary investigation has shown that integrated photoelas-
ticity permits to determine the velocity field in an axisymmetric flow.
The method described here can be generalized in various directions.

It is possible to take into consideration the nonlinear term in

Eq. (7). A numerical algorithm can be elaborated which would permit
to get rid of the assumption about weak birefringence. Bending of the

light rays may be taken into account [#] as well. The method for

axisymmetric flow can probably be expanded for flows of an arbitrary
cross-section, analogously to determining stress in specimens of the

arbitrary cross-section [B].
Finally, since flow birefringence has been observed in different mole-

cular gases [%-3'], integrated photoelasticity can be also used to solve

air flow problems.
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| INTEGRAALNE FOTOELASTSUS TELGSUMMEETRILISE VOOLU

KAKSIKMURDVUSE UURIMISEKS

On nididatud, et norgalt kaksikmurdvas telgsiimmeetrilises voolus vdimaldab integ-
raalne fotoelastsus kahes paralleelldikes teostatud modtmiste pohjal määrata koiki kiirus-

vektori komponente. -

Хиллар АБЕН, Альфред ПУРО ,
=

-

ИНТЕГРАЛЬНАЯ ФОТОУПРУГОСТЬ ДЛЯ ИССЛЕДОВАНИЯ ДВУПРЕЛОМЛЕНИЯ
ОСЕСИММЕТРИЧНОГО ПОТОКА j

Показано, что в случае слабо двупреломляющего осесимметричного потока интег-

ральная фотоупругость позволяет определить все компоненты вектора скорости.
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