
Proc. Estonian Acad. Sci. Phys. Math., 1993, 42, 1, 63—76

63

UDC 681.3.06:62—52:681.324

Leo MOTUS *

TIME CONCEPTS IN REAL-TIME SOFTWARE**

(Presented by I. Engelbrecht)

Abstract. An attempt is made to systematize the variety of time-bound terms, under-

standings and theories used for describing, analysing and verifying the properties of

real-time (embedded) software.

Time concepts usable in real-time software are projected to the background of

those used in other fields of science and technology. This topic has not been too widely
discussed earlier. Recently some interest in the essence of time as used in programming
has been shown by Hoogeboom and Halang [!], M&tus [?], Motus and Rodd [?].

The conclusion has been reached that real-time computing in a wide sense — i.e.

including specification, design, implementation and maintenance — actually makes use

of at least three different philosophical time concepts within one system.

Introduction

Our everyday life becomes, with surprising speed, more and more

dependent on real-time systems. This is accompanied, quite naturally,
with an increasing number of specialists working in the area of develop-
ing and maintaining such systems. Many disparate methods, methodo-

logies and theories have emerged, all claimed to be extremely useful in

specifying, designing, implementing, testing and/or maintaining a real-
time system. It is no wonder that even an old-timer in the domain may
get confused with all the various notions, concepts and theories. At least,
this happened to the author of this paper. Therefore it was decided to

take a quasi-philosophical look at some of the existing results in a hope
that this might somewhat clear the essence of real-time systems. Conse-

quently, the paper contains elements of a survey intertwined with subjec-
tive speculations about the essence of time in general and time in com-

puter systems in particular.
As stated by Hoogeboom and Halang ['], practical consensus has

been reached on the definition of real-time system’s functioning — DIN
44300 fixes that real-time functioning is *“an operation of a computer
system in which the programs for processing of incoming data are

constantly operational so that the processing results are available within
a given time interval; depending on the application, the data may appear
at random or at predetermined times”.

Arguments about the essence of ‘“real-time” still do not indicate any
tendency to converge to a generally agreed and unambiguous definition.
One of the goals of this paper is to propagate our understanding that
the attribute “real-time” does not denote time as such. Rather, it charac-
terizes computer system’s ability to establish correspondence between
different time-measuring and/or counting systems.

This understanding is concordant with the image of a real-time

system as being a computer system that functions in direct and immedi-

* Tallinna Tehnikaiilikool (Tallinn Technical University), Ehitajate tee 5, EE-0026

Tallinn, Estonia. ,
** This paper was originally presented at the IFAC/IFIP Workshop on Real-time

Programming, 23—26 June, 1992, Bruges, Belgium.

https://doi.org/10.3176/phys.math.1993.1.07

https://doi.org/10.3176/phys.math.1993.1.07

64

ate interaction with one or more technical and/or natural systems
(the latter systems form the environment that embraces the computer
system, also called the surroundings of a computer system). Usually, in
each of the mentioned systems there exists its own time-measuring/count-
ing method(s). For a successful cooperation it is essential that the

computer system (which is supposed to influence the behaviour of the
other systems in a clearly-defined direction) is able to understand,
analyse and forecast the functioning of its partners.

Difficulties. One can distinguish two sources of difficulties hindering
the understanding of and agreeing upon the basics of real-time systems.
The first source follows from the fact that a real-time system must be con-

sidered as part and parcel with its environment — consequently different

specialists with different understandings and priorities must be involved.
Certain level of mutual understanding has been achieved, it still needs
considerable improvement.

The second source of difficulties has been pointed out by Kurki-
Suonio [*] and can be reduced to the fact that in the software process
resulting finally in a real-time system, it is often needed to consider real,
existing systems, as well as their models — and, of course, we often mix

up what is what. Obviously we have to be aware of what belongs to the
models of reality and what is a property of a real system.

Connections to traditions. Computing science people study a class
of reactive systems (see, for example, [°]) — i.e. computer systems
with an on-going interaction with its environment. The class of reactive

systems is usually opposed to transformational systems (computation-
oriented systems having strictly limited and well guarded interaction
with humans only). From an engineer’s point of view, the class of reactive
systems embraces both soft real-time and hard real-time systems—a good
definition of those is given by Hoogeboom and Halang [!].

Reactive and transformational systems resemble open and closed

systems (as used in thermodynamics to denote energy-wise closed and

open systems). This analogy was pointed out by Motus and Rodd [3].
Reactive systems are information-wise open, whereas transformational

systems may be considered as informationally closed systems. This

analogy adds to the importance of a joint study of a real-time computer
system and its environment, and to the importance of a clear correspon-
dence between time-counting methods in the interacting partners. This

analogy also helps us to understand more exactly the essential differences
between reactive and transformational systems, and to properly emphasise
the peculiarities of hard real-time systems as a sub-class of reactive

systems.
Basic differences between reactive and transformational systems have

been thoroughly discussed in [3]. In the context of this paper (and real-
time systems) two of them are of special interest:

— truly asynchronous (in addition to well-known synchronous and

asynchronous modes) execution mode of interacting processes, i.e. the

activation instants of interacting processes are independent of each

other; this mode usually results from incomplete knowledge of causal

relations and/or from their substitution by timing constraints;
— time-selective interprocess/intercycle communication. The latter

is closely related to a wide-spread understanding that real-time systems
consist of non-terminating programs. This interpretation has remarkably
hindered the study of time-selective communication. In many cases it is

sensible, and even more correct, to consider a non-terminating program
as repeated activation (may be for an infinite number of times) of a

terminating program — this results in a concept of cyclic execution of

5 Eesti TA Toimetised. F ¥ M 1 1993 65

terminating programs, which leads us to the problem of time-selective
interprocess/intercycle communication.

Timing problems are, according to many authors, reducible to safety
properties of a program. Henzinger, Manna and Pnueli [°] demonstrate
that depending on a particular timing problem it is reducible either to

a safety property or to a liveness property. Another area that needs
additional research is that of linking fairness with time constraints.

About this paper. Hoogeboom and Halang ['] have considered time

in real-time systems against the background of human civilization and

general philosophy of time, providing thus an excellent basis for this

paper. We have tried to take another step towards systematizing the

existing (in programming) time-bound terms. From a very pragmatic
point of view, we stress some philosophical connections and survey some

papers in computing science domain dealing with various aspects of time
and its processing.

Some pragmatic terms used in software practice

Traditionally, real-time systems (and their software) Баз Беёп сой-
sidered to be closely connected to time and its properties. Quite often the

presence of explicit time in a computer system has been considered as

the main hallmark of a real-time system. As stated by Stankovic [¢], the

former statement is a slight exaggeration. Motus and Rodd, [*], suggest
that the most important problem in real-time systems is matching the
behaviour of co-operating dynamic systems (one of which is the computer
system). Anyway, time seems to be a suitable tool for obtaining and

proving the match between the co-operating dynamic systems that form
the real-time system.

Kopetz, [7], states that in real-time systems time and data form an

atomic unit of information. This does not mean, however, that time can

be considered as just another variable. The computing science community
has learned during the past decades that time handling, its modelling
and its presentation in computers is quite tricky, and it needs special
care. The author of this paper has a feeling that the necessary paradigms
are already present, the majority of required theories have been suggested
and published. The next problem to be solved seems to be the selection
of the conceptually well-founded minimal sufficient set of paradigms,
theories and notions. Probably the general solution to this problem cannot
be found. Still, this paper tries to give some hints that might help to find
a way through the “time jungle” for a particular case of real-time systems.

The “time jungle” can be illustrated by a sample list of questions
about time characteristics as stated by Shoham [B]:

— is time discrete or continuous?
— is time unbounded? |
— jf time is continuous, is it dense, and if so, is it complete, in other

words, can continuous time be modelled by rational or real numbers?
— listime branching or linear; cyclic or acyclic?
— if time branches, should past and future be handled differently?
Note that sometimes philosophers use “real time” to denote the fact

that time has been modelled by real numbers (see, for example, Bent-
hem [°]).

This list of questions can be extended by adding problems of manipu-
lating with different time scales (see, for example, Corsetti and

colleagues [!°]), and by considering the huge variety of possible ways
that may define time when specifying system’s requirements (see, for

example, Halbwachs ['!]).

66

In this section, some of the practically used time-bound terms are
surveyed. The terms are classified according to three different standpoints
of the observer — time as seen by an “implementor”, time as seen by a
“verifier” and time as seen by а “specifier”. Terms are grouped accord-
ing to their most frequent use, though they make sense, can be used and
are used in the other life-cycle stages as well.

Time as seen by an “implementor”

These are terms that usually take their origin from the implementation
stage of a software life-cycle. For the “implementor” the only reality is

computer system, the rest of the world is a model. The model is rather
detailed in the case of a real-time system (reactive system, open com-

puter system), and may be very schematic in the case of a transformational
(closed) computer system.

“Implementor” is interested in time that provides a basis for organiz-
ing the execution of programs, or may be used in the implementation-
bound theories (like scheduling). ;

The following four definitions are taken from Kopetz, ['2].
Physical time — a reference is established by counting cycles of a

physical, strictly periodic process (ticks of a physical clock). Usually
there is a measure to express the distance of one tick from another, i.e.

physical time is usually a metric time.

Logical time — a reference is established by counting specified signifi-
cant events during the execution of a program (logical ticks). The time,
i.e. the distance between two adjacent logical ticks, is not measurable.
Most often the “implementor” is interested only in the order of logical
ticks (events).

Absolute time — a reference is established in relation to a global
event for a given system (e.g. the origin of absolute time may be the
instant of switching the system on).

Relative time — a reference is established in relation to a local event
in the given system. Usually we may have more than one relative time
simultaneously in a system.

|In the case of distributed programs (i.e. those executed on multi-

processors or across computer network), onehas to distinguish between
global time and local time, depending on whether the reference is valid
for the whole system or only for a part of it. Global and local attributes

may be used for both logical and physical time. As a rule, absolute time

is global, and relativetime is normally considered tobe local.

Only one absolute time may be defined in a system, within one and
the same system several relative times are usually in use. Whenever
necessary, a correspondence between physical and logical time may be
established. Then, since the other types of time — absolute, relative,
global, and local — are derivative terms, we will have a set of com-

parable times. Metric properties of the physical time are used as the
basis for comparison. I

A common feature of the above-defined termsis that they are intrinsic
to a program (or to a system consisting of a program and a computer).
The same terms may be used in a real system (inan implemented pro-
gram) and in its formal models. The set of terms enables to introduce
total ordering (natural for sequential programs and for interleaving
models of concurrency), as well as partial ordering of events (e.g. for
maximal parallelism model of concurrency).

Note that the above-presented set of terms is strictly oriented to one
execution of a program, and during this execution it accepts no explicit
influence from outside the computer system.

5* 67

Time as seen by a “verifier”

This viewpoint is typical for the design stage of the life-cycle. The
“verifier” is interested in all possible executions of a program, and

usually concentrates on certain properties of a program — e.g. safety
properties, liveness properties, fairness. Time is often reduced to the

ordering of events (i.e. logical time), without really using metric prop-
erties of time. This is true (and works well) even for many reactive

systems (see, for example, [!]).
“Verifiers” work, as a rule, with computational models of programs.

Consequently, the time they use need not (but may) be related to a time

used by the “implementor”.
The temporal logic community, for example, is using linear time and

branching time. Linear time allows a “verifier” to concentrate on the

universal properties of a program, i.e. on the properties that hold for

all execution sequencies of that program. Branching time considers the

collection of all execution trees generated by a program, and usually
helps to concentrate on its existential properties — i.e. there exists at

least one execution sequence with that particular property. Emerson and

Halpern, [!*], compare branching versus linear-time temporal logics and

point out advantages of both. They give a slight preference to the

branching-time temporal logic.
o Explicit metric properties have been recently introduced into temporal
logic. Two basic approaches can be distinguished, [°].

1. Bounded-operator approach introduces for each temporal operator
one or more time-bound versions (usually upper-bound and lower-bound

temporal operators). This leads to two separate proof principles:” upper-
bound properties are close to liveness properties, whereas lower-bound

properties closely resemble safety properties. Correspondingly methods
usable for proof of safety and liveness properties are used.

2. Explicit-clock approach uses the traditional temporal logic proof
system, time is introduced as a separate variable and must usually have
metric properties (see, for example, ['*]).

Some researchers argue that continuous time is needed (see, for

example, ['¢]), others claim that they manage with discrete time, [°]. The
arguments for and against continuous time are often linked with the

corräpil)tational model used (“maximal parallelism” or “interleaving”
model).

Note that the “implementors” use diserete time, whereas “verifiers”

use discrete as well as continuous time, “specifiers” have many specific
problems of their own. Still, from pragmatic considerations, the “spec-
ifiers” tend to use discrete time.

Time as seen by a “specifier”

The specification is the most complex stage of a life-cycle having
major impact on the quality of a future system. Experience shows that up
to 609 of errors discovered during implementation, testing and mainten-
ance take their origin from the specification stage. The complexity of
this stage has two basic reasons:

— a “specifier” has 10 move from actually existing objects and

phenomena (to be influenced by the computer system) to their more or less
formal models since during the design, verification and implementation
of the system, he/she works with these models only; transition from
real objects to their models is complicated because of the famous “seman-

tic gap” between informal and formal descriptions;

68

— a “specifier” has to Нх the time constraints on the behaviour of

the computer system and time requirements that guarantee the necessary
match between behavioural characteristics of the computer system and
those processes in the real world that are tobe influenced by the com-

puter; a minor inconsistency here may cause a major error inan applied
system.

In the context of this paper we are interested in time presentation
and in matching time counting in co-operating systems.

Presentation of time constraints and requirements. When stating time
constraints and requirements for the future system, we face two basic

problems.
1. The necessity to handle different time scales — in a normal

control system, in order 10 characterize some action, we need milliseconds,
for others we need minutes, hours or even days. When moving gradually
to implementation, the different time scales are to be presented in the
units of system time (usually defined by a timer in the computer system).
As demonstrated by Corsetti and colleagues, ['°], this is not a straight-
forward task.

2. The necessity to handle different ways of presenting time con-

straints and requirements. For example, to maintain controlof acar when

braking on a slippery road, the rotation of wheels must be well synchron-
ized. We can state that brakes on different wheels must start to work

simultaneously and that the wheels are to be blocked simultaneously.
This statement sounds theoretically nice but is of no use in practice.
Simultaneity here can only mean that we fix a tolerated (admissible)
difference in wheels’ angular speed. For a computer system which con-

trols brakes, this must be translated into actual time constraint (e.g.
milliseconds) required to synchronize the angular speed of wheels.
Another example of a similar problem is given in [!].

According to Hoogeboom and Halang, ['], the philosophers call this
view on time “reductionism” — i.e. time is reducible to the history system
of events, and vice versa, — as opposed to “Platonism” where time is a

primary system and is non-reducible to the history of events.

Matching dififerent time-counting systems. Time is a widely used tool
for controlling the match of behaviour and dynamic properties of the

co-operating systems. More properly, time provides a common measure

against which we can compare the behaviour and dynamics of co-operat-
ing systems.

Speaking about a computer system, the common measure is, of course,
global physical time. In practice, however, a computer system co-operates
with many technical systems (that form the computer’s surroundings).
Some of these systems may essentially function in continuous time, some

others are characterized by a sequence of events etc. The notions and
terms used for comparing a variety of times with the global physical
time in a computer system, or with any globally accessible metric time,
are grouped into two, [3]. |

1. Synchronization terms

Tolerance interval (for (part of) a computer system’s surroundings) —

if two or more events characterizing, or influencing, the surroundings
occur within this interval, they are considered to occur simultaneously
from the point of view of (part of) the surroundings.

The tolerance interval will determine the necessary granularity of
time required for describing (this part of) the surroundings.

69

Equivalence interval (for the embedded (into the surroundings) com-

puter system) — if two or more events occur inside a computing system
within this interval, then they are considered to have occurred simul-
taneously (from the point of view of the embedded computer system).

A trivial consequence is that the equivalence interval may not be

larger than the tolerance interval for the corresponding events.

Simultaneity interval (for the embedded computer system) is the

time that elapses from the occurrence of the first of a generated group
of events until the occurrence of the last event of the same group. The

generating event and the group of events generated by it should be in

the same equivalence interval.

2. Acceptability terms

This group of time notions is concerned with timeliness of events and
the resulting data.

.

Validity time is a time interval during which an event in the system

Ic)an bedconsidered legal or the data resulting from this event can legally
e used.

Validity time notion is essentially based on the ideology of time-

stamping of data (see, for example, [l]). The validity time is usually
determined by the producer of the data who also time-stamps it.

Response time is a time interval during which specific input values

must be accepted and corresponding output values must be generated
(it could also be interpreted as a specific form of validity time).

Overstressing the importance of response time in connection with

real-time systems has caused a number of misinterpretations discussed

by Stankovic [€].
Timeout is used to denote a deadline for response/validity time.

What are “timing properties’?

In this subsection, we discuss some of the software properties usually
termed as “timing properties”, or “real-time properties” or “time
correctness”. We have tried to collect and systematize as many different
time-bound properties as we could find in the literature. It is suggested
that the timing properties be classified into three groups.

1. Performance-bound properties comprising integral time character-

istics for the system as a whole, or for a part of it. Examples of this

group are response time, timeout, execution time for a sequence or loop
of programs. This is the most thoroughly studied group of timing prop-
erties.

The presence or absence of certain performance characteristics can be

proved/evaluated by using:
— temporal logic, more specifically either bounded-operator or

explicit-clock approach (see, for example, [®] and ['°]); in both cases

upper and lower bounds of the properties can be verified; while explicit-
clock approach always reduces performance to safety properties, the

bounded-operator approach results in liveness properties (the upper-
bound case) or safety properties (the lower-bound case);

— algebraic methods ['®!7] and timed Petri nets (see, for example,
['B]), provide formulae for evaluating response time for а collection of

programs whose co-operation is guided by causality (or before/after)
relationship;

— the Q-model formalism that considers a more sophisticated case

of loosely co-ordinated group of cyclically executed programs where some

of the unknown (or incompletely known) causality relations have been

70

substituted by timing constraints (see, for example, [?]); formulae are

provided for evaluating upper and lower bounds for the message passing
through the given collection of programs;

— simulational approach, which probably is the first, and still the
most widely used method for performance studies.

2. Timewise correctness of events and data is concerned with
execution time of programs and delays between events. The latter covers

a wide variety of questions connected to:

+ — measuring/stating validity time of data;
— checking whether (requiring that) data is consumed within its

validity time;
— checking (requiring that) the length of the specified simultaneity

(or equivalence) interval; s

— requiring (scheduling) repeated activation of programs (periodic
or quasiperiodic execution); |

— егс.
These questions have been somewhat less thoroughly studied than the

performance-bound properties but are still well covered. The correspond-
ing examples can be found in temporal logic (e.g. [°]), in compositional
verification [!?], in algebraic methods [!¢], in the Q-model [?].

3. Time correctness of interprocess communication is a typical problem
of hard real-time system, although it can also be met in other reactive

systems. ‚

Intuitively it is clear that time correctness of interactions is a good
indication of whether or not time parameters and constraints imposed
upon the interacting parties (usually independently of each other) are

consistent and non-contradicting. Amazingly little attention has been paid
to time correctness of interprocess interaction (even for the case of a

non-cyclical execution of processes). Most of the researchers concentrate
on the transport delays in the communication media. This is certainly a

very important feature, yet it can be useful and applicable in the imple-
mentation stage only.

A few researchers dwell on interaction timing in the pre-implementa-
tion stages. For example, Ноотап, [!°] whose assertion language enables
to specify the time instant when the interaction should start.

The case of repeatedly executed processes, where time-selectivity of
the transmitted data really becomes important, has drawn even less
attention. Time-selective interactions were first introduced by Quirk and

Gilbert, [?°]. The idea has been further developed by Motus, [?']. As
demonstrated in [®], the concept of time-selective interaction, if properly
handled, is an excellent tool for checking the consistency and non-contra-
diction of time parameters and constraints imposed upon the interacting
parties.

Time-selective interaction means, in a nutshell, that the data required
by the consumer (addressee) must be of a certain, prefixed, age —i. e. not
too old and not too new. This age requirement remains unchanged
throughout all the execution cycles of the interacting parties, even if they
are activated with different periods. The idea is based on the under-

standing that in a real-time system the most recent data are not necessar-

ily the most suitable for consumption — for example, the requirements of
the data integrity, in many cases, overrun the traditional desire for the
most recent information.

From the traditional computing science viewpoint the consequences
of adopting time-selective interaction are rather heretical — it becomes
natural that the consumer process may never consume some of the mess-

71

ages sent to it, whereas some other messages may be consumed several
times. As a by-product, this concept explains and enables to forecast
timing errors that occur at seemingly random instants (see, [3]), caused
by a sawtooth graph of a non-transport delay occurring inevitably during
the interaction of truly asynchronously executed processes.

It seems highly probable that little attention to the interprocess
communication and time-selective interaction in particular is mostlycaused by incomplete understanding of the essence of time in real-time
systems. Interaction is a complex activity where different time par-
ameters, constraints, requirements, and possibly different philosophical
concepts of time, are involved.

Concerning philosophy of time -

Time-bound terms surveyed in the previous section reflect a healthy
and pragmatic attitude of programmers — a notion of time was intro-
duced only when it was inevitable and useful. Not too much attention
has been paid to the resulting metasystem that could describe the essence
of time in programs. This has led to some discrepancies in understand-
ing the role of time in the software process, which has considerably
hindered the development of theoretically well-founded software engin-
eering environments for real-time systems. The rest of this рарег 1$
devoted to propagating an interpretation of time in software (as a
combination of several philosophical concepts о! time) that might
clarify some misconceptions.

The philosophical essence of time is still an object of active research.
An extensive survey of contemporary time research can be found in
Benthem [°], Denbigh [??], Shoham [#]. In the context of this paper, it
seems useful to emphasize that, as a rule, only one basic concept of time
is being used in each major research area (see, for example, Denbigh
[2]). In the following, three time concepts have been described — each
of them is also being used in programming as demonstrated in the follow-
ing sections of this paper.

Time in theoretical physics is just like any other space co-ordinate; it
has no intrinsic direction, and is fully reversible.

Time in thermodynamics and in other evolutionary sciences (e.g.
biology) has a fixed intrinsic direction and is generally not reversible.
Under strict assumptions (e.g. complete control of the causality) it is
sometimes possible to reverse time for a brief period.

Time in our consciousness (e.g. psychology) has a fixed direction,
its origin is always at the present moment; therefore strict distinction
is made between Past, Present and Future.

In theoretical physics and thermodynamics observers stay outside of
processes under study, this is why all events happening in time are

equally real to them. In our consciousness the only real events take place
in the Present; events that have taken place in the Past and events
that will take place in the Future differ substantially from the present
ones and from each other.

The computing science world can be characterized, with a slight
exaggeration, by two opposing schools of thought. One school advocates
the use of logical time — if no events occur in the system, time does not
proceed. The other school advocates the use of physical time — metric
properties of time are essential and time forms a basis for measuring
system properties. These schools are in concordance with the above-
surveyed time-bound terms. However, clear connections to the above-
described philosophical concepts of time have not explicitly been accepted.

72

Examples of using different time concepts in software

The following examples introduce another dimension of a time study
in software, and demonstrate how and why time concepts traditionally
used in different research areas come to be used in programming.

Time concept of theoretical physics

Programs in informationally closed computer system (i.e. transform-
ational computer systems) operate very much like models of Nature
in theoretical physics — in both cases it is assumed that all the causal

relationships are known and can be controlled by the program/experi-
mentor. This assumption is true, provided that the structure of programs
and the properties of the computing system (in- other words — the

equivalents to the Laws of Nature for a program) do not change during
the execution of the program. Since we know and control all the causal
relations in transformational programs, the time can, almost at will, be
reversed — exactly as we do in theoretical physics. As an example, just
think of the possibility to “undo” some already completed action and
“redo” it later (in some CAD system, or in a wordprocessor).

The most sophisticated and complete usage of this time concept is
described by Jefferson, [?]. The “virtual time” notion, which is equiv-
alent to the above-described global time, has been introduced. For

reversing the direction of time, Jefferson uses a “time-warp” mechanism.
In fact, virtual time is an additional co-ordinate of the program’s state

space. In this approach each process of the program executes in its own

(local) time, which has a correspondence with the (global) virtual time,
and sends messages to other processes whenever necessary. Each

message is time-stamped with its virtual sending time (a local time

mapped into the virtual time). A process accepts messages in the order
of their arrival and checks that their virtual sending times are increasing.
Whenever а message is received that is preceding in its sending time
the already processed messages, the time-warp mechanism is applied and
the process’s local time is set back. All the more recent messages are

annihilated by returning corresponding “antimessages” to their senders.
In this way the time-warp mechanism guarantees time integrity of the
concurrently executed processes.

Time concept of thermodynamics

In an open computer system (reactive system) the assumption that
all the causal relationships are known is not justified. The surroundings
which embed the computer system are, as a rule, too complicated to be

completely formalized. Even if a complete and formal model of the

surroundings exists, the computing power of the embedded system is not
sufficient to consider all the required details. The other assumption —

the ability to control all the causal relationships — is even less founded.

Imagine, for example, a computer controlling the loading of a chemical
reactor. It is practically impossible to “undo” the loading of a component
after it has been loaded and the resulting reaction has started.

Consequently, time in open computer systems is normally not revers-

ible and has a definite intrinsic direction. So, time in real-time systems
is, in general, employed exactly as it is in thermodynamics or biology [?].

Another application of the thermodynamical time concept can be found
in temporal logic (зее, юг ехатр!е, [s], ['*], апа ['°]). т temporal
logic assertions are based on infinite sequences of events ordered accord-

ing to increasing time. It is not possible to “redo” the history according
to the verifier’s will. In order to change the history, one has to go several

73

steps backwards and modify the transition system (i.e. a complex
comprising of a computer system and its surroundings, or the correspond-
ing computational models) that generates the history. Similar problems
can be met by using algebraic methods ['®]. Still another example of
thermodynamical time is discussed by Ledru in [24].

Time concept used by our consciousness

Processes in real-time applications are typically executed repeatedly —

periodically, quasiperiodically, or aperiodically — and are terminating.
This paradigm is preferable to the competing paradigm claiming that

processes in real-time systems are non-terminating. Although it saves

us from the necessity to work with non-terminating processes, it also
introduces the problem of reasoning about repeatedly activated, interact-

ing processes — the number of activations may be theoretically infinite

(in fact, countable).
”

Temporal logic, in spite of all its virtues, is rather cumbersome in

handling time problems for repeatedly activated processes (see, for

example, [?°]). This is a direct consequence of the useof thermodynamical
time which implicitly forms the time basis of temporal logic. Repeatedly
activated processes are also the cause that necessitates the introduction
of time-selective interprocess communication [21].

For describing timing properties of interprocess communication, es-

pecially in the case of repeatedly activated processes, it seems natural to

use time in the same way as it is used in our consciousness. This means

that time is relative, the instant of requesting data is taken to be the

origin of the relative time. When the process requesting data is activated
another time, the origin of the relative time is defined anew.The required
age of the data is described with respect to the origin of the relative
time used in connection with this particular interaction.

Such interpretation of relative time is close to the time concept as

used in our consciousness. By applying this concept of time for each

pair of interacting processes, a set of internal relative times is formed.
This time concept has been used by Quirk and Gilbert [?], Motus [?!],
and Caspi and Halbwachs ['6].

Another example where such relative time is effectively applicable
is given by Corsetti and colleagues in ['°]. They correctly observe that
the models associated with temporal statements are likely to change inter-

pretation when changing from one time unit to another. This problem
could be simplified by handling the time unit change similarly to the
interaction of two processes — i.e. by defining a relative time with the

origin at the instant when the time-unit change is to take place.

Mixed use of multiple time concepts

In the previous section some examples were given emphasizing the

usage of one or another, but always a single philosophical concept of
time in programming. We claim that in order to enable full-scale analysis
of timing properties — i.e. performance-bound properties, timewise
correctness of events and data, and time correctness of interprocess
communication— it is necessary to use several time concepts simul-

taneously.
The analysis of timing properties is possible only on a suitable mathe-

matical model of computations, simulation cannot give the required level
of confidence. It is essential that the model captures the necessary
multitude of time notions, otherwise the analysis can cover only part of

timing properties.

74

For example, a timed Petri net is based on causality relationships and
locally defined delays on forwarding the causing factors. Since causality
is usually non-reversible, one can deduce that only thermodynamical time
concept is used in timed Petri nets. As a consequence, performance
analysis is perfect, timewise correctness of events and data is analysable
to a certain extent, and time-selective interprocess communication has
not been handled in timed Petri nets. Since temporal logic is implicitly
also based on thermodynamical concept of time, the same arguments
can be applied for characterizing its ability of analysing time prop-
erties.

Let us consider the Q-model as another example [%:2!]. It is based
on thermodynamical time concept, but it also relies substantially on the
use of several relative times (similar to time as used in our conscious-

ness) — one for each process and one for each. pair of interacting
processes. For each process the thermodynamical time advances in

grains defined by the execution time interval and/or by repeated activa-
tion interval. Thermodynamical time is reversible inside one grain, if
necessary. This multitude of times forms a solid basis for analysing all
the above-listed timing properties of a system that are described in the
Q-model. A software engineering environment CONRAD has been devel-
oped in order to automate the system description and analysis (see, for
example, [%]).

The Q-model is excellent for analysing timing properties. As a price
for this, it is rather awkward for describing algorithms — this is just
another illustration that no panacea exists. :

Conclusions

Pragmatic attitude of computer scientists and control engineers
towards developing real-time systems and their software is, in principle,
good and healthy. However, from time to time it is advisable to take a

more abstract look at one’s area of activities. This might slightly clarify
some fuzzy spots in the overall picture and change one’s approach to
problems, hopefully fostering thus the quality and efficiency of the

practical outcome.
Time-bound terms and related theories have been widely discussed

recently, a huge amount of different opinions is circling around. As a result,
the author of this paper got confused and attempted to take a more

abstract look. The above presented speculations about time resulted

together with a conclusion that computing science is somewhat excep-
tional — other sciences, as a rule, make use of a single philosophical
time concept. Computing science needs at least three different time

concepts simultaneously. It is interesting to note that simultaneous use

of multiple time concepts seems to be necessary only to guarantee and
demonstrate the wanted co-operation of a group of dynamic systems that
form a real-time system. When solving other problems, one can manage
with a simplified time system.

75

REFERENCES

1. Hoogeboom, 8., and Halang, W. A. The concept of time in software engineering
for real time systems. — 3rd International Conference on Software Engineering
for Real Time Systems. lEE Conference Publication, 1991, 344, 156—163.

2. Mdotus, L. Time concepts in software. — Concise Encyclopedia of Software Engi-
neering, Pergamon Press, Oxford et al., 1992.

3. Métus, L., апа Rodd, M. G. Specification of Embedded Real-time Software,
Prentice-Hall, London et al., 1992.

4. Kurki-Suonio, R. Some thoughts for the Real-time Session in the Como Workshop
(6th Int. Workshop on software specification and design). Private communi-

cation, 1991.

5. Henzinger, T. A., Manna, Z., Pnueli, A. Temporal proof methodologies for real-time

systems. School on Formal techniques in real-time and fault-tolerant systems.
Univ. of Nijmegen, The Netherlands, 1992.

6. Stankovic, J. A. lEEE Computer, 1988, 21, 10, 10—19.

7. Kopetz, H., Kim, K. H. Temporal uncertainfies in interactions among real-time

objects. Institut fiir Technische Informatik, Technische Universitit Wien, Austria,
Res. rep. no. 10/90, 1990.

8. Shoham, Y. Reasoning about Change. Time and Causation from the standpoint of

Artificial Intelligence. MIT Press, Cambridge MA, London, 1988.

9. van Benthem, J. The logic of time. A model-theoretic investigation into the varieties

of temporal ontology and temporal discourse. Kluwer Academic Publishers, 1991.

10. Corsetti, E., Crivelli Е. Mandrioli, ~ Montanari, A, Morzenti, A. C., San

Pietro, P., Ratto, E. Proc. 6th Int. Workshop on software specification and

design, Como, 1991, 92—101.

11. Halbwachs, N. Synchronous programming of real-time systems. The language
LUSTRE. School on Formal techniques in real-time and fault-tolerant systems,
Univ. of Nijmegen, The Netherlands, 1992.

12. Kopetz, H. Proc. sth IFAC Workshop on Distributed Computer Control Systems,
Pergamon Press, New York, 1984, 11—15.

13. Kurki-Suonio, R., Systd, R., Vain, J. Proc. 6th Int. Workshop on software speci-
fication and design, Como, 1991, 84—91.

14. Emerson, E. A. and Halpern, J. Y. J. of the ACM, 1986, 33, 1, 151—178.

15. Ostroff, J. Temporal Logic for Real-time Systems. Research Studies Press/ John

Wiley and Sons Inc., 1989.

16. Caspi, P. and Halbwachs, N. Acta Informatica, 1986, 22, 595—627.

17. Caspi, P. and Halbwachs, N. Proc. Int. Conference on Parallel Processing, 1982,

150—159.

18. Sifakis, J. Acta Cybernetica, 1979, 4,2, 185—202. |
19. Hooman, J. Compositional Verification of Distributed Real-time Systems. School on

Formal technigues in real-time and fault-tolerant systems, Univ. of Nijmegen,
The Netherlands, 1992.

20. Quirk, W. J. and Gilbert, R. The Formal Specification of the Requirements of

Complex Real-time Systems. AERE, Harwell, UK, rep. no 8602, 1977.

21. Métus, L. and Kaaramees, K. Proc. 4th IFAC Workshop on distributed computer
control systems. Pergamon Press, Oxford et al., 1983, 93—101.

22. Denbigh, K. G. Three concepts of time. Springer, Berlinet a1.,, 1981.

23. Jefferson, D. Proc. Int. Conf. on Parallel Processing, Silver Spring, Md., 1983,

384—394.

24, Ledru, Y. Proc. 6th Int. Workshop on software specification and design, Como, 1991,
130—139.

25. Allen, J. F. Artificial Intelligence, 1984, 23, 2, 123—154.

Received

August 3, 1992

76

Leo MOTUS .

AJA OLEMUSEST REAALAJA TARKVARAS

On püütud süstematiseerida aja mõistega seotud termineid ja teooriaid, mis on

kasutusel reaalaja süsteemide ja nende tarkvara kirjeldamisel, analüüsil ja verifitsee-

rimisel.

Programmeerimises kasutatava aja olemuse avamiseks on võrreldud seal käibivaid

ajakontseptsioone traditsioonilistes teadustes (näiteks füüsikas, termodünaamikas, psühho-
loogias) kasutatavate ajakontseptsioonidega.

On jõutud järeldusele, et arvutiteadus vajab kolme erineva filosoofilise ajakontsept-
siooni samaaegset kasutamist reaalaja süsteemide tarkvara ajaliste omaduste täielikuks

kirjeldamiseks ja analüüsiks. Traditsioonilised teadused on aja mõttes paremini fokus-

seeritud ja vajavad igaüks vaid ühte ajakontseptsiooni,
‚

Лео МЫТУС

О СУЩНОСТИ ВРЕМЕНИ В ПРОГРАММНОМ ОБЕСПЕЧЕНИИ
РЕАЛЬНОГО ВРЕМЕНИ

Сделана попытка систематизировать связанные с понятием времени термины и

TEOPHH, которые используются при описании и анализе систем реального времени и их

программного обеспечения.

	b10720984-1993-1 no. 42/1 01.01.1993
	Statement section
	Chapter
	Picture section
	Nikolai Alumae 1915—1992

	Nikolai Alumae 12. 09. 1915 — 27. 63. 1992
	Chapter
	Nikolai Alumade 12. 09. 1915 — 27. 03. 1992
	Teaching stafi of the Department of Structural Engineering, Tallinn Technical University.
	Directors of the Institute of Cybernetics Hillar Aben, Ulo Jaaksoo, Nikolai Alumie and Boris Tamm.
	A seminar on mechanics at the Institute of Cybernetics.
	N. Alumide with his Russian colleagues.
	A symposium in Tallinn
	At the Tallinn House of Scientists.

	INTEGRATED PHOTOELASTICITY FOR AXISYMMETRIC FLOW BIREFRINGENCE STUDIES
	Fig. 1 shows geometrical notations in the cross-section of an axi symmetric flow (coordinate z is along the axis of the flow). Fig. 1. Cross-section of an axisymmetric flow and geometrical notations.
	Fig. 2. The fluid circulation system and the polariscope: L — light source, D — diffusor, P — polarizer, C — compensator, A — analyzer, CCD — a CCD camera feeding data into a PC.
	Fig. 3. The flow channel should be placed in an immersion bath to avoid refraction of light,

	MODAL RESONANCES IN PROBLEMS OF ACOUSTIC WAVES SCATTERING BY ELASTIC SHELLS
	Fig. 1. Modal resonances in a bounded frequency range. The computation has been carried out for the problem of scattering of an obliquely incident plane acoustic wave by a circular cylindrical shell (An aluminium shell immersed in water; the physical parameters are defined т [!°]; the relative thickness of the shell is A=l/10; the angle of incidence is ao=l3°, the observation angle a,=o° the observation point is situated in the far field (r— oo); the rigid background has been used here).
	Fig. 2. The character of changing the dependence |f.(x) —7a(x)| in the vicinity of the T, wave resonance with n=B6—9o (An aluminium shell immersed in water; h=l/32; @о==lo° a,=o° r— o). Here typical minima occur а{ the resonance frequencies due to the inadequacy of the (intermediate [°]) background used.
	Fig. 3. Modal resonances of the T, wave when proper (soft) background is used.
	Fig. 4. The same as in Fig. 1, but only for one (the 50th) resonance of the T, wave. The computation has been carried out with sufficiently small step size.
	Fig. 5. The character of changing the dependence |[fn(x) —fa(x)| with n=lB (An aluminium shell immersed in water [!°]; h=l/10; a,=l2°% a,=o° r— oo; the inter; mediate [?] background has been used here).

	OPTIMAL PLASTIC DESIGN OF SHALLOW SHELLS WITH STEP-WISE VARYING CROSS SECTION
	Fig. 1. Shell geometry.
	Fig. 2. Yield condition.
	Optimal parameters of the shell with one step in the thickness

	О КРАЕВОМ НАПРЯЖЕННО-ДЕФОРМИРОВАННОМ СОСТОЯНИИ ТОНКИХ УПРУГИХ ОБОЛОЧЕК =
	Untitled

	TURNING POINTS AND LINES IN LINEAR PROBLEMS OF FREE VIBRATIONS AND BUCKLING OF THIN SHELLS
	Untitled

	ЭКСПЕРИМЕНТАЛЬНОЕ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ РАСПРЕДЕЛЕНИЯ ТВЕРДЫХ ЧАСТИЦ В ЛАМИНАРНОМ ПОГРАНИЧНОМ СЛОЕ
	Puc. 1. Экспериментальный стенд. / — конфузор, 2 — цилиндрическая труба, 3 — система сеток, 4 — диффузор, 5 — оптико-электронная система, 6 — стальная пластина, 7 — держатель пластины. ОКГ — лазер.
	Untitled
	Puc. 2. Распределение концентрации примеси (/) и продольной скорости (2) В поперечном сечении рабочей части трубы. Puc. 3. Сравнение расчетного поля концентрации (1) с теоретическим (2) и экспериментальным полем (кружочки); 3 — распредедение скорости.

	TIME CONCEPTS IN REAL-TIME SOFTWARE **
	SOME FRAGMENTS OF EXPERT SYSTEM TECHNOLOGY
	Data flow diagram for a knowledge base structure.
	Tabié 1 Knowledge base decision structures for mini-expert systems of the prcblem ‚
	Untitled
	` j Table2 Data dictionary. Lt defines the information content of every data 'flow of our problem data flow diagram in Fig. 1
	Untitled
	Table 3 A fraction of the IF-THEN Rule Base
	Untitled
	Untitled

	ROBUST CONTROL FOR A CLASS OF LINEAR SYSTEMS
	ON ZERO-OUTPUT CONSTRAINED DYNAMICS OF DISCRETE-TIME NONLINEAR SYSTEM
	COMPLEXITY AND SIMPLICITY
	Fig. 1. Potential energy as a function of distance between atoms.
	Fig. 2. The Mandelbrot set.
	Fig. 3. Penrose decagon tiling [%]
	Fig. 4. Birds after M. Escher [?'].
	Untitled
	Untitled
	Fig. 5. Behaviour of stable points of quadratic mapxn+l=c—x2n: a) 0<c<0.37; b) 0<c<l1.0; c) 1.72<c<1.82.
	Fig. 6. Construction of the Koch curve [2].
	Fig. 7. A Pythagorean tree [%].
	Fig. 8. Another variant of the Pythagorean tree after 50 steps [%].
	Fig. 9. The Lorenz attractor (calculated by V. Miider)
	Fig. 10. The Korteweg-de Vries soliton.

	LOHITEATEID
	ON PRINCIPLES OF AFTEREFFECTS AND NONLOCALITY IN CONTINUUM MECHANICS

	MATHEMATICAL MODELLING OF THE HEARTBEAT
	Fig. 1. Traditional ECG.
	osgitiatory oscillatory pulse-type pulse-type Fig. 2. Structural scheme of the mathematical model.
	Fig. 3. Solution of Eq. (8). Solid line — solution, dashed line — its derivative.

	NIKOLAI ALUMAE KOLLEEGIDE PILGU LABI
	Chapter

	Advertisement

	Advertisements
	Advertisement

	Illustrations
	Nikolai Alumae 1915—1992
	Teaching stafi of the Department of Structural Engineering, Tallinn Technical University.
	Directors of the Institute of Cybernetics Hillar Aben, Ulo Jaaksoo, Nikolai Alumie and Boris Tamm.
	A seminar on mechanics at the Institute of Cybernetics.
	N. Alumide with his Russian colleagues.
	A symposium in Tallinn
	At the Tallinn House of Scientists.
	Fig. 1 shows geometrical notations in the cross-section of an axi symmetric flow (coordinate z is along the axis of the flow). Fig. 1. Cross-section of an axisymmetric flow and geometrical notations.
	Fig. 2. The fluid circulation system and the polariscope: L — light source, D — diffusor, P — polarizer, C — compensator, A — analyzer, CCD — a CCD camera feeding data into a PC.
	Fig. 3. The flow channel should be placed in an immersion bath to avoid refraction of light,
	Fig. 1. Modal resonances in a bounded frequency range. The computation has been carried out for the problem of scattering of an obliquely incident plane acoustic wave by a circular cylindrical shell (An aluminium shell immersed in water; the physical parameters are defined т [!°]; the relative thickness of the shell is A=l/10; the angle of incidence is ao=l3°, the observation angle a,=o° the observation point is situated in the far field (r— oo); the rigid background has been used here).
	Fig. 2. The character of changing the dependence |f.(x) —7a(x)| in the vicinity of the T, wave resonance with n=B6—9o (An aluminium shell immersed in water; h=l/32; @о==lo° a,=o° r— o). Here typical minima occur а{ the resonance frequencies due to the inadequacy of the (intermediate [°]) background used.
	Fig. 3. Modal resonances of the T, wave when proper (soft) background is used.
	Fig. 4. The same as in Fig. 1, but only for one (the 50th) resonance of the T, wave. The computation has been carried out with sufficiently small step size.
	Fig. 5. The character of changing the dependence |[fn(x) —fa(x)| with n=lB (An aluminium shell immersed in water [!°]; h=l/10; a,=l2°% a,=o° r— oo; the inter; mediate [?] background has been used here).
	Fig. 1. Shell geometry.
	Fig. 2. Yield condition.
	Untitled
	Untitled
	Puc. 1. Экспериментальный стенд. / — конфузор, 2 — цилиндрическая труба, 3 — система сеток, 4 — диффузор, 5 — оптико-электронная система, 6 — стальная пластина, 7 — держатель пластины. ОКГ — лазер.
	Untitled
	Puc. 2. Распределение концентрации примеси (/) и продольной скорости (2) В поперечном сечении рабочей части трубы. Puc. 3. Сравнение расчетного поля концентрации (1) с теоретическим (2) и экспериментальным полем (кружочки); 3 — распредедение скорости.
	Data flow diagram for a knowledge base structure.
	Fig. 1. Potential energy as a function of distance between atoms.
	Fig. 2. The Mandelbrot set.
	Fig. 3. Penrose decagon tiling [%]
	Fig. 4. Birds after M. Escher [?'].
	Untitled
	Untitled
	Fig. 5. Behaviour of stable points of quadratic mapxn+l=c—x2n: a) 0<c<0.37; b) 0<c<l1.0; c) 1.72<c<1.82.
	Fig. 6. Construction of the Koch curve [2].
	Fig. 7. A Pythagorean tree [%].
	Fig. 8. Another variant of the Pythagorean tree after 50 steps [%].
	Fig. 9. The Lorenz attractor (calculated by V. Miider)
	Fig. 10. The Korteweg-de Vries soliton.
	Fig. 1. Traditional ECG.
	osgitiatory oscillatory pulse-type pulse-type Fig. 2. Structural scheme of the mathematical model.
	Fig. 3. Solution of Eq. (8). Solid line — solution, dashed line — its derivative.

	Tables
	Optimal parameters of the shell with one step in the thickness
	Tabié 1 Knowledge base decision structures for mini-expert systems of the prcblem ‚
	Untitled
	` j Table2 Data dictionary. Lt defines the information content of every data 'flow of our problem data flow diagram in Fig. 1
	Untitled
	Table 3 A fraction of the IF-THEN Rule Base
	Untitled
	Untitled

