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TURNING POINTS AND LINES IN LINEAR PROBLEMS OF FREE
VIBRATIONS AND BUCKLING OF THIN SHELLS

(Presented by I. Engelbrecht)

The equations for thin elastic shells contain a natural small parameter u>o
connected with the relative shell thickness A/R. So, in solving these equations it 18

convenient to use the asymptotic integration methods. Some problems of shell vibrations

and buckling may be reduced to linear ordinary differential equations. In other cases,

we have to consider the equations with partial derivatives. If the coefficients of these

equations are variable, then the construction of the asymptotic expansions of their
solutions may be complicated by the turning points or caustics.

The first important results for the turning point problem in the thin-shell theory
were obtained by N. A. Alumäe. This paper presents a review of some works in which
the results of N. A. Alumde on the axisymmetric conical-shell vibrations and cylindrical
and conical shell buckling are developed.

Ordinary differential equations

1. The free axisymmetric vibrations for a shell of revolution may be
described by equation [!], as follows:

(Lo+p*Li+A) U=o. (1.1)

Here Lo, L, are the linear ordinary differential operators with the
variable coefficients, p?>~h/R is a small parameter; U= (u, w), where
u and w are the displacement projections of the middle surface points
to the directions of the generatrix and the normal, A is the unknown
frequency parameter.

System (1.1) may be reduced to an equation of the sixth order:
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, (1.2)

ag=l, by=A—Fk2(x),

where x < [а,В] is the generatrix length, ks(x)=B-'Jl—B’2? is the
middle surface curvature, B(x) is the distance between the point on the
middle surface and the axis of symmetry.

We suppose that B(x) is a regular function. Then all coefficients in

(1.1) and (1.2) are also regular. The expressions of these coefficients in

terms of B are given in ['].
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In the intervals of x where by(x)0 Eq. (1.2) has four solutions with
a large index of variation. These solutions may be represented as the

following asymptotic series:
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The other two solutions have asymptotic expansions by the powers of p*

Wn (x, 1) zšu*kwkn(x), n=s, 6, (1.4)

where wgs and wys are the solutions of the membrane equation
d*w dw

b27+bl—s7+bow=o. I (1.5)

The asymptotic expansions (1.3) and (1.4) are not valid near the

turning point x=x, where by(x))=o. For x=x, the coefficient Aom

goes to infinity and the solution wgs has a singular point.
In 1960 N. A. Aluméde [?] got the main terms of the asymptotic

expansions of the solutions in the neighbourhood of the turning point for

the conical shell. In 1965, the same results were obtained for the

arbitrary shell of revolution [3].
Using the universal set of standard functions, the following terms of

asymptotic expansions of solutions (1.1) have been found [*°]. If the

turning point is simple b (xo%0), then we may use as standard

functions the solutions vg), i=l, 2,..., 5 of the eguation
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In this case the asymptotic expansions of the solutions of Eq. (1.2) have
the form

w) =z 3ekAr(x)v (n)+edisw*(x,p), #==l,2,8,4,5, w©®) = w;, (1.6)
k=o

: .

4/5

gu=pib, n=e—l(—ž——f by"dx) , vgjq =fvg) dn, k=0,1,...

The functions Ak, w*, Wes and n are regular at x=ux,.
The solutions @; form the fundamental set of the solutions of Eg.

(1.2), hence the solutions w® may be represented as linear combinations
of functions w;. These linear combinations are different for x<<x, and

x>xo. If b (xo) >0 the relation between the solutions @ and w; is

given by formulas

D, (w, —w;) < @ — 2 ш,,
D, (w 3 —w;) —wo — 2D, (ws— wy),

—iD)(wy— w3) <WA -—iD,ws;, (1.7)

iD (w, + wy) < w® —iD, (wy + w4) + Doyws,

D3ws~+D,ws < w® — Dyws+Dywe+D, (wy — wy),

Ws —— W)> Ws. ; :
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The left sides of (1.7) correspond to the case x<<x, and the right
sides correspond to the case x>x,. To get (1.7) the asymptotic
expansions of standard functions, v{)(n), as |n| —>oo are used. The

constants D; are given in [!*]. The formulas for the case b (x)<<o
may be derived from (1.7) by the substitution of —x for x. For the
unknown function u similar formulas may be written. Functions (uso, Wso)
апа (иво, Фво) are the solutions of the membrane system

(Lo+A)U=o. (1.8)

For the spheroidal shell there may also exist a double turning point at
which bs(xo) =O, (x0 =O, b’(%) 0. The asymptotic solutions т the

neighbourhood of xy may be built by means of the standard equation [°]
@%

‚
@

4
dv

+о2 у»,dn® n dn?
+ Tl- dn |

where y is the given constant.

2. The expansions of the asymptotic solutions have been used for the

approximate solving of the boundary problems for the axisymmetrical
vibrations of the shells of revolution. Let the shell edges be clamped

u=w=w'=o юг о х=а, x=§. (2.1)

Н

A<A-, A= min £k} (x), (2.2)
xe[a, B]

then by(x) <0 and interval [а, В] does not contain turning points. We
find frequencies and vibration modes substituting the linear combination
of solution (1.3) and (1.4)

6 6

u=';š Слил, w=nš,l' CnWn ; (2.3)

into boundary conditions (2.1). The equality to zero of the determinant
A(A, n) of the received linear system with respect to constants C, yields
the frequency equation

A(A, u)=Ao(A)+O(u)=0, Ao(A)=uso(a)us(P) — tso(a)uso(p).

Therefore, the eigenvalues A which satisfy unequality (2.2) differ from
the eigenvalues of membrane system (1.8) with the boundary condi-
tions u(a) =u(p)=o by the order of u. This fact is caused by the stress-
strain state of the shell to be represented for A<<A~ as a sum of main
membrane state (1.4) and edge effect (1.3). In this case the degene-
ration of the boundary problem (1.1), (2.1) into the membrane boundary
problem is regular [€].

If the unequality

A>AY, At= max k (х),
хе{а, В]

is fulfilled, then by(x) >0 and the representation (2.3) may be also used
as a general solution of the system (1.1). In this case only two solutions

(1.3) are the functions of the edge effect. Two other functions (1.3)
quickly oscillate. The frequency equation has the form

B

Ao(A) cosz2+4o(p)=O, z(A, p).=%f bitdx.
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In the ease A-<A<At+ (A-<<At) the interval [, p] contains the turtl-
ing points. Letus suppose that b’(x) >0 for x&< |a,f]. For example,
this supposition is valid for the conical shell. Then only one simple turn-

ing point x=xp (a<<xo<<P) exists.
Let us represent the general solution of (1.1) in the form

6 6

u= 23 Cou™, w= 3'Caw",
п==l n==l

If the turning point is far from the shell edges

Xo—a>e, P—x>e, (2.4)

then for x=a and x=p solutions («?, w®) ought to be replaced by
the linear combinations of solutions (u;, w;) in accordance with (1.7). In
this case the frequency equation has the form [!], as follows:

Ao (A) sin2g+G (A) cos2940 (p'/?) =O, Zo=%-fb'2/4 dx.

Function G(A) depends on the solutions of membrane system (1.8).
For x<xo, the vibration mode is a sum of the membrane solutions

and the edge effect solutions. For x>xo, it contains two quickly oscillat-
ing solutions. The principal behaviour of the vibration mode component —

w(x) — is shown in Fig. 1.
If A is close to A= or A*, the problem of the approximate eigenvalues

determination is more complex. In this case, the turning point lies near

one of the edges of [a, ], and at this edge it is necessary 10 use expan-
sions (1.6).

Let us now study the shell of revolution similar to the spheroidal shell
for which the curvature k;(x) has for x & [а, В] the single extremum in

x=xo (k}(x0)#0). The case k) (xo)>0 corresponds Ю the elongated

spheroid, and the case£/ (x)<<O corresponds to the compressed spheroid.
We suppose that ky(B) >kz(a). If &7(x0 >O, then for АЛО <АА) (а)
the interval [a, ] contains two simple turning points, and for 2 (a) <<
<A<<A+*=Fk2 (B) there 15 only one simple turning point. The value of

A=A~ corresponds to the double turning point. Ifk5(x0<O, the two

simple turning points exist for k 2 (B) <A<CA*, and the value of A=A*

corresponds to the double turning point. X _ i В

In ["#] the approximate frequency equations have been got for the

case when there were two simple turning points x, and x, which were

sufficiently far from each other, namely:

хо — х » 1/. - (2.5)

If condition (2.5) is fulfilled, the solution (u;, w;) may be used in the
interval (x;, x2). We also suppose that for both turning points unequality
(2.4) is fulfilled. Using twice formulas (1.7) (at points x=x, and

x=x;) we find the relations between the solutions at x=a and x=§
and use these relations for the construction of the approximate frequency
equation.

For the shell of the elongated spheroidal type (k)(xo))>0) this

equation has the form:

P(A) cosz.+Q(A) sinz.4+R(A)=o, г_=%- f Ь/“ ах

The vibration mode quickly oscillates in the interval (xi, x2).



4 Eesti TA Toimetised. F * M 1 1993 49

For the compressed spheroidal shell (k 7 (xo) <<o) in the first approxi-
mation we have |

K(A) sin 2, sin 23+L (A) sin 2, cos 2,+M (A) sin 2, cos 23+
+N(A) cos z; cos z2=o,

X В

~z|=—l- fb4 dx, 22=-—L f b!*dx. |
| Ua P

х›

The vibration modes oscillate in the intervals (a, x;) апа (х», В).
By using the asymptotic integration method the axisymmetric

vibrations of the joined shells of revolution have been studied in the case

with/without turning points [®]. In most cases the frequency equation
in the first approximation has the form
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A(A) =AM (A)AD(A) ... A® (A) =O,

where the coefficients of the equation A®(A)=o depend (as a rule) on

the parameters of only one shell. _

3. For the nonaxisymmetric vibrations besides p there is one more

parameter — m — which is equal to the number of waves in the circular
direction.

И т is small (fixed), formulas (1.6) and (1.7) keep their forms ['°]
апа two additional regular solutions (u7, w7;) and (us, ws) of type (1.4)
exist.

If m is large (m~pu'), the problem may be reduced to the following
system [']:

d 00

вАOа A=Ak, (3.1)
k=o '

where A is an 8)X8 matrix. The buckling problem for the membrane

axisymmetric initial stress state of a convex shell of revolution may also

be reduced to the system (3.1) ['!l2].
At the turning points x=x*, the equation

det (Ao(x) —AE)=O (3.2)

has multiple roots. Away from the turning points, the solutions of (3.1)
have the expansions

y O(x, и) >SyP (x)p*exp (n! [ lidx).
k=o

Near the simple turning point (where A{x.)=As(x.)=o) two sol-
utions have the form

¥ (5, 1) 23 a) (1) o (n) 4w 3 b (1)t
k=o k=o dn

d2v x 2/3

———dn2—nu=o, n=p.“2/3(3/2fi)\.jdx) ‚ j=l,2,

(3.3)

where v are the standard Airy’s functions.
The iree vibrations and buckling modes of shells are shown in Figs.

2,3, 4. More specifically, Fig. 2 shows vibrations of the paraboloid, Fig. 3
shows the buckling of a spheroidal shell under externai pressure, and

Fig. 4 shows the buckling of a convex shell under torsion. Crosses indi-
cate turning points.

Let us consider a shell of revolution the curvature of which changes
sign at x=x., as shown in Fig. 5. For the vibrations and buckling of
such a shell, four solutions have expansions (3.1), where A=y and
As=l4 for all x and A(x.) =As(x.). Near the point x. the solutions have
the same form (3.3) ['%].

4. Expansion (3.3) is useless if the distance between two turning
points is small (i.e. |x? — x| =0(u'?), see Fig. 3). Let system (3.1)
contain the unknown spectral parameter A. We seek the eigenvalues A
for which this system has solutions exponentially decreasing away from
the interval [х(?—х®].

Let x(D=x®=x, for A=A, and equation (3.2) have the multiple root

A=iqo. Then the solution has the expansion ['!]

(х, zm k|2 (iqox+at? —y(x, p)o2ptiyy (B)enaoxte®, — E=pl2(x —xp), аO. (4.1)
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Неге и» (Е) are polynomials in & and y,(&)=H (&) is Hermite's polyno-
mial of the degree m. The eigenvalues have the expansions

AM=Ag+nur(m+l/2)+0(pn?), m=0,1,2

If gos~o, these eigenvalues are asymptotically double.
Formulas (4.1) describe the buckling mode of a noncircular cylin-

drical shell under variable axial compression [!*]. After the separation
of the variables w(x,2)=y(x) sin (nnz/l), the two possible buckling
modes corresponding to the same critical load are shown in Fig. 6. For
a short shell, go=o and the mode is similar to the one shown in Fig. 3.

Partial differential equations

5. The following system of equations of the eighth order

u2Avow+AAlw— А2Ф=О‚ M2AOAO(D,+A2w=O (51)

may be used to solve some problems of free vibrations and buckling. Here

A; are the linear differential operators of the second order with variable

coefficients, Ao is the two-dimensional Laplace operator in curvilinear
coordinates and A is the unknown spectral parameter.

We seek the solutions of the system (5.1) which are exponentially
decreasing away from the weakest point хо, yo, in the form [! 16]

@ (х, У, 1) zlš wrwg (€, m) es, (5.2)

S(x, y)=pox+quy+V(x,y), E=p"2(x—x), n=p"2(y—uy),

where w,(E,n) are polynomials and V(x,y) is a homogeneous quadratic
form in x— xp and y — yo and the imaginary part of V is positive definite.

The buckling mode of the spheroidal shell under the complex loading
is described by formula (5.2) (see ['7] and Fig. 7).

6. Mode (5.2) is used mainly for the convex shells. Let us study the
localized modes of low frequency vibrations or buckling of the cylindrical
and conical shells.

The equation describing the buckling of the thin elastic closed conical
shell has the form: |

(L+u*Lu+ALr)U=o, TU=O. (6.1)

Here L and L, are the linear differential operators describing the elon-

gation and the bending-twisting of the shell, L; is a linear differential

operator caused by the prebuckling tangential stresses, A is the unknown
parameter of the critical load, U= (u,v,w) is a displacement vector.
Operator T' provides the linear boundary conditions on the shell edges
х==х\(у) апа х==х›(у).

If the free vibration were analysed, L;U in (6.1) ought to be replaced
by U. In this case A is the unknown frequency parameter.

The solution of boundary-value problem (6.1) can be expressed as

‚“6
.

п

<

. Ax ЦИ 'ЁОЩАИ‚ wW x w<°>,+p,f w) .

-

w2u@4ptu®, -vpv +p 00, Pl == .
(6.2)

Here (u©®,v©®, ©©®) is the main solution. The edge effect functions u(®),
(, @°) decrease exponentially away from the shell edges x=x; and
X=Xo.
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In the works by N. A. Alumie ['®l9], the expansions (6.2) have been
used for the analysis of the cylindrical and conical shells buckling in the
case when variables x and y in (6.1) were separated. We study the
problems in which the exact separation of the variables in (6.1) is
impossible, yet their asymptotic separation is possible.

The main solution is sought in the form [%], as follows:

® (х, , ша) 23 pklw,(x, E)e™P
(6.3)

k=o

E=u"2(y—w), Jqo=o, Ra<oo.

Неге @(х, &) are polynomials in & Formulas for u and v may be received
by replacing w in (6.3) by u and v. Solution (6.3) decreases away from
the weakest generatrix y=y, (see Fig. 8).

Substituting (6.3) in (6.1) one can find unknown constants yq, go,a
and functions v, ux and w,. First-order approximation yields

a = 4)——— (6.0,Мшо==Ло

0

+
90

Wo
o’w, )+—ch—L (хз дх?

—

дх?qä
where k(y)=xk,, Nwo=—qš Tox7'wyg, T; is membrane initial stress-

resultant. In the problem of free vibrations Nwc=—xwo, and A
A p,: A0+....

The order of Eq. (6.4) makes it possible to satisfy at each edge x=ux

only two boundary conditions. The other two conditions may be satisfied
by the corresponding choice of the edge-effect solutions.

The eigenvalue A, is a function of variables go and yo:Ao=f(do, 40).
The values до апа уо тау be found from the conditions °

Ё—=О —д—і—‹‚=o. ‚ (6.5)ддо ,

дуо

The parameter ap=ia/2 is the root of the square equation

_— —-——62 f ==o.21 е

-дуо

д° 104
-

аз
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From the condition of solvability of the second-order approximation, it
follows [?°]:

| wg"’")(x» E) =ш) (x) Hm(§),
_ 1)( д2 92f(m )I

—
— — B ) e — — 6.6ai (m+) (a 6 TT › (6.6)

т==o, 1,2,...; n=]1,2,3,...

Here Hm(t), the Hermite’'s polynomial of degree m, w®, is the eigen-
function of boundary problem (6.4) corresponding to AD.

The eigenvalues AmM=AW4pA"+ ...
of the boundary problem

(6.1) are asymptotically double.
Formulas (6.6) may be obtained by using a system of the shallow-

shells Eqs. (5.1), but for the construction of the following terms of the
asymptotic series it is necessary to use a more exact system (6.1).

This asymptotic method may also be used for the study of the cylindri-
cal shell vibrations and buckling. In this case the multiplier x ought to
be replaced by 1. For a cylindrical shell, the analytical approximate
solutions for some problems should be obtained.
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As an example, let us study the buckling of a circular cylindrical shell
with the slanted freely-supported edges under external pressure. In this
case ky=Ty=l. The boundary conditions for Eq. (6.4) have the form

wo=w;=o for x=x, x=ux, (6.7)

Let x1(9)=0 and х›(ф) =!-НапВсозф, where PBs%o is the edge
inclination angle. Then the boundary problem (6.4), (6.7) solution has
the form

nnx л*л*
WM =sin ———— M-t

—, n=]1,2,...0 x2(y)
f %x 5 (9)4}

For the buckling problem we seek the lowest eigenvalue corresponding
to n=l. By solving the system (6.5), when n=l, we get

уo=o, 2
—

q> =3"n/ly, ly=1x;(0).
Therefore the weakest generatrix is the longest cylinder generatrix y=o
(see Fig. 9). The first approximation to the eigenvalue A()=4x-3-%4/,
corresponds to the critical pressure, and it coincides with that given by
Southwell-Papkovich [?!] for the shell of the length I, and straight
edges.

It is easy to see that

02f
—l6

%M
0

027 4ntan p
2 ,

— oy —=
4ü

oa 7 Ogodyo
°

Oyz
——

4

The second approximation correction, which takes into account the
slanted-edge effect, is given by formula

(0,1) —i]/ д0_д° A(Do =z, D

2 dg; 99 2YAPsy, so=l;"tan .

The next approximation correction may be found from the condition
of solvability for the next approximation

5 4 22 Va
NOaAAA

24 оцр РО 50 —.
? ба %р о ©

The localization of vibration modes near the cylindrical and conical
shell generatrix is caused by the variability of geometrical and physical
shell parameters, by the slanted-edge effect and by the initial stress
resultants variability. In the papers [7!* %% 23] and others, such problems
have been analysed by the asymptotic method described above.

The buckling form localized in the neighbourhood of the asymptotic

line[zf)]f the shell of negative Gaussian curvature has been construgted
in .
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S. B. FILIPPOV, P. E. TOVSTIK

OHUKESTE KOORIKUTE OMAVONKUMISTE JA STABIILSUSE LINEAARSETE

ULESANNETE HARGNEMISPUNKTID JA HARGNEMISJOONED

On esitatud iilevaade uuringutest ohukeste elastsete koorikute teoorias, kus oluline

roll on hargnemispunktide analiiiisil. N. Alumde esitatud meetodit on edasi arendatud

hargnemispunktide analiiiisis, rakendatuna telgsiimmeetriliste kooniliste koorikute oma-

vonkeprobleemi lahendamiseks ппр silindriliste ja kooniliste koorikute stabiilsuse

uurimiseks.

С. Б. ФИЛИППОВ, П. Е. ТОВСТИК j

TOUKH H ЛИНИИ РАЗВЕТВЛЕНИЯ В ЛИНЕЙНЫХ ЗАДАЧАХ СВОБОДНЫХ
КОЛЕБАНИЙ И УСТОЙЧИВОСТИ ТОНКИХ ОБОЛОЧЕК

Дан обзор работ, посвященных анализу точек разветвления в задачах свободных

колебаний и устойчивости упругих тонких оболочек. Развиты ранние результаты
Н. А. Алумяэ по анализу колебаний осесимметричных конических оболочек и устойчи-
вости цилиндрических и конических оболочек,
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