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Abstract. The problem of minimum weight design of thin shallow spherical shells with
piece-wise constant thickness is studied. The material of the shell is rigid, perfectly
plastic, obeying Tresca yield condition and the associated deformation law. The influence
of geometry changes which occur in the post-yield stage, is taken into account. The
optimization problem is posed under the condition that the deflections of the optimized
shell and of a reference shell of constant thickness, respectively, coincide. Necessary
optimality conditions are derived with the aid of the variational methods of the optimal
control theory.

1. Introduction

Optimal design of rigid-plastic structures has usually been studied in
the case of collapse load — thus, under the requirement of incipient
plastic flow. Such designs appear to be sensitive to geometrical changes
taking place in the post-yield range [!'].

Introducing the geometrical nonlinearity one can examine the post-
yield behaviour of the structure. In the present work it is assumed that
the strains of the thin shells remain infinitesimal whereas the transverse
deflections being finite do not exceed the order of the shell wall thickness.

Large deformations of plastic structures have been investigated by
several authors [?]. The post-yield stage of shallow shells of Tresca
material was studied by Duszek [3]. The same problem was solved by
Sherbourne and Haydl [*] in the case of von Mises yield condition. Kondo
and Pian [°] suggested a method on the basis of the assumption that the
shell deforms into a number of truncated cones which are separated by
plastic hinge circles. The authors [®] used an approximation of the exact
yield surface which consists in the separation of the bending and
membrane responses.

Different optimization techniques for geometrically non-linear axi-
symmetric plates and shells have been suggested in [%78].

In the present study the optimal design problem is examined by an
approximate method employed earlier by the authors [7] for investigat-
ing circular and annular plates of piece-wise constant thickness. The
optimal thickness variation is sought for a shell under the requirement
of minimum material consumption.

2. Formulation of the problem

Let us consider a simply supported thin shallow spherical shell of
radius A (Fig. 1). It is assumed that the structure is axisymmetric and

h=Hh, (2.1)
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for reD; (j=0, ..., n). Here D; stands for an interval (a;, a;+) and
ay=0, an+1=R. Let the shell be subjected to the uniformly distributed
external pressure loading of intensity P. The geometrical parameters and
the loading will be considered as the given constants.

Fig. 1. Shell geometry.

We are looking for a design of the shallow spherical shell for which
the material volume

V=3 hi (YA’ — a2 — YA’ —
i=0
attains the minimal value under the condition that the deflections of
the shells of piece-wise constant thickness and of constant thickness,
respectively, coincide.

The stress-strain state of the shell in the post-yield range is deter-
mined by the membrane stresses N,, Ny, bending moments M,, Mp, and
radial and transverse displacements U, W.

Assuming that the displacements do not exceed the order of the shell
thickness the theory of von Karman is applicable. Thus, the equilibrium
equations have the form

(om)'=n,,
[ (em1)’ — ms]"+[4oni (et +w”) ]’ +po=0,

whereas the deformation components coupled with the stress components
may be written as

t+| ) (22)

(2.3)
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nj=— RN, w”,
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23



In (2.3) and (2.4) the primes denote the differentiation with respect
to the nondimensional coordinate . Dimensional and nondimensional
quantities are coupled by the relations

& Nro M, PR? A
Q=7?-y n1,2=-—N—*—, Ibise=s M.’ R M.’ s=—-§,
i il Bl O A U RO
_hg v e * ’ /_R’ s h* ’ —4AM*, q—M*.

Here Q stands for the transverse shear force, N.=aoh., M.=aoh’ /4,

oo being yield stress and h. — thickness of the reference shell.

Material of the shell is assumed to be an ideal rigid-plastic one
(without strain hardening) obeying the Tresca yield condition. The
influence of elastic deformations is disregarded. The equations of the
exact yield surface in the space of stress resultants were first derived by
Onat and Prager [°] using the assumption of straight normals.

In this work we shall use the approximation of the exact-yield sur-
face which may be presented as (Fig. 2) ;

for the region D;, j=0, ..., n. On the m;—n, plane we shall use the
generalized square yield condition which may be conceived as a linear
approximation to the current yield surface.

I My

Aot

Fig. 2. Yield condition.

A deformation-type theory of plasticity will be utilized in the present
study. The relations between generalized stresses and strain components
are furnished by the associated deformation law which states that the
vector with strain components (2.4) is directed along the outward normal

to the yield curve (2.6).
Since the outer edge of the shell is hinged, the boundary conditions

may be expressed as

my(1)=u(l)=w(1)=¢(0) =0, (2.7)

UJ(O) = Wy.

At the centre of the shell the symmetry conditions will take the follow-
ing form
mi(0)=my(0), n,(0)=ny(0). (2.8)
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3. Necessary optimality conditions

Let us assume that the plastic behaviour of the shell corresponds to
the following flow regime: |ni|<y;, |mi|<<v}, nj+|me|=y] for each

o € D;. According to the associated deformation law,

ei=xn1=0 - (3.1)
and

62_2M*

s G2

for each p = D; (j=0, ..., n).
Substituting (2.4) in (3.2) leads to the equation

u
fy=— 2 ——

4

(3.3)

which holds everywhere.
Eqgs. (3.1) with (2.4) represent differential equations with respect to -

non-dimensional displacements « and w.
When integrating (3.1) and accounting for (2.7), one can state that

w=wp(l — ) (3.4)

and

u=—"(e—1) (tle+1) —wo) (3.5)

for o= (0,1). Combining (3.4), (3.5) and (3.3) gives
ng=wo(1 — @)+t (e*—1). (3.6)

The circumferential bending moment m, can be expressed with the aid of
(2.6) and (3.6) in the form

ma=y2 — {0 (1 — @)+ (@ — 1))? (3.7)

since the bending moment is assumed to be non-negative.
Substituting (3.6) into the first equation in (2.3), one obtains

'n;=—%+wo(%——-l) +t(g——%) (3.8)

for o= (0,1). The second equation in the set (2.3) can be integréted
making use of (2.7), and the continuity requirements imposed on ¢, n; @
at g=a; give

(o)’ — ma+-dom (to+w') +-5- ¢ =0. (3.9)

Inserting (3.7) and taking (3.4) into account, the Eq. (3.9) can be
expressed as

2
B 1\)2
m;=__m..1__v_q{wo(1?_1) +¢(Q__Q_)} e

Q

— 4n, (to— wor—% o (3.10)



Making_ use of (2.4), (3.4), (3.5) it is easy to recheck that x,=0
agd ugb? if wo<t, e.g. the stress profile appears to be kinematically
admissible.

For statical admissibility of the stress state, it is necessary that

nl<wi, e D,
|| <y 0 3.11)
0<m<y}, ee&D.

The most dangerous places where (3.11) might be violated appear to
be the circles associated with the steps in the thickness. Assuming that
the membrane stress n; is non-positive, the constraints (3.11) can be
substituted with

m (o) <y,
ni(w)=—yi, o&Db; (3.12)
or
n (i) +vi— §3 =0,
(3.13)

m (o) — 2 + 62=0,

where g;, 0; stand for unknown parameters. .
The problem posed above will be considered as a variational problem
of the optimal control theory. Evidently, m; and n; in (3.8) and (3.10)

must be referred to as the state variables, and «;, yi, 0;, & (j=1, ..., n;
i=0, ..., n) as the preliminary unknown constant parameters. The
quantity w, will be handled as the given maximum deflection of the shell
with constant thickness.

The cost function (2.2) may be presented as

J‘=vai(]/s"’—-af——}/sz—a? ) (3.14)

i+l
i=0 °

When minimizing (3.14) one has to take into account the differential
Egs. (3.8), (3.10), the additional requirements (3.13) and the boundary
conditions (2.7), (2.8). In order to derive necessary optimality conditions
the following functional will be employed:

L=I+ 3 J (w1 +ym| — L) do+

i=0 D,
+ 3t (mi(a) — 2402 ) vy (m (@) Fy —8)). (3.15)
7=1

Here A and 4 will be considered as the adjoint variables and mn;, v; stand
for the unknown constant Lagrangian multipliers. The functions 2,1
will be regarded as piecewise continuous functions.

In (3.15) due to (3.8) and (3.10) the Lagrangian function is
expressed as

L:x{—%ﬁwo(%— 1)+t(@—%)}+~p{——m'—g_—vi—
—ofwo(+—1)+t(e— )} —amite—w) —F-o}. (16
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For optimality of the solution it is necessary that the total variation
of the functional (3.16) should be equal to zero. The variations of the
state variables at the points a; will be determined by the following
expressions :

d
Am (o) =6m (o) +- |, A,
. (3.17)
AT (st -Ag

where 6m;, dn, stand for the weak variations and Am;, An, denote the
total variations of the functions m,, n;; Aa; being the increments of the
parameters a;. It is assumed that the quantities m, and n, are continuous
from which yields

Ami (aj+) =Am (0 —) =Am; (a;), (3.18)

An, ({lj+) =An; ((l,' -—) = AN (a,) g

However the leff and right-hand weak variations at g=a; 6n(a;=%),
om, (aj==) must not be equal to each other. Moreover, the adjoint coor-

dinates A,y may have finite jumps at the points a; (j=1, ..., n).
Performing the differentiation of the functional (3.15), one obtains
e 0l LR 2 { 3 , oL;
,E s Aa/—}-ié; == Ay,+§5[ —A\'ony — ’'dm; — o ony —
dLi : i aL, } i a’[u
—d—anéml _EWAY] dQ+ § (}\,Gnl-*—'lpém]) o -
L j=0

+ 2 {nj(Am; (a;) — 2yAy;+20,A0;) +v; (An, (a;) +Ay; — 28;AE;) } =0.

j=

(3.19)

Bearing in mind that dn, and 6m, are the independent variations of
corresponding quantities in (3.19), the adjoint set could be presented as

M =1 atypo,

. (3.20)
=2

Q

for each subdomain D;. According to (2.7), (2.8) and (3.19) the trans-
versality condition takes the form

(1) =0. (3.21)

Since Ay; are arbitrary variations, from (3.19) and (3.4) follow the
equations

VSQ—G?—VSL——(LI?H —13/2\(/ —‘g—dg—2ym,~+v/=0. (3.22)
1
Due to the independence of variations A8;, AE; one has
6;=0
ni9;="0, (3.23)
v;§j==0.
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Substituting (3.20)— (3.23) into (3.19) and taking into account (3.14),
(3.17), (3.18) leads to

MAG/"{-Z" {Mfliﬂ —) (Any(@i+1) — 1] (G —)Aait) —
ys*—dl © =0
—M(ait) (Any (@) —n] (ai+) Aa) +$ (@ ;1) (Amy (@) —
i fn,1 ((li+1 —)Aam) o \P((lr*—) (Am, ((l;') — m; (Gi+)Aa[) } +

y 2,. {mAmn (@) +vildn, (a;—)} =0, (3.24)

i=1

which combined with (3.15) and (3.17) yields
=W g, — 35 { A (@) D0 HAm (0 [ (0)] —

Vsz e (7.3. i=1
— L; (a;)A;l;-i—L;_] (ﬂi)lAGi — niAm, (ai) — viAn, () } =) (3.25)

The square brackets in (3.25) stand for the finite discontinuities of
corresponding variables:

[A(a)]=M(at) — A(ai—), (3.26)
[p(a:) =9 (ai+) — P (ai—).

Considering Am, (a;), Any(a;) for j=1, ..., n as arbitrary variations
in (3.24), one obtains

[A(a)]=v; (3.27)

and
[ (a))]=n;. (3.28)

Thus the adjoint variables have finite jumps at the boundary points
of regions D;. .

Similarly, due to the arbitrariness of the increments Aa; in (3.28), it
follows that

'Vs’—a;‘.’

for-j=1,..5m

4. Optimal design of a shallow spherical shell with hinged outer edge

Necessary optimality conditions for the posed problem are presented
by (3.20)—(3.22), (3.27)—(3.29). The optimal design of the shell is
such that the equilibrium Eqgs. (2.3) and boundary conditions (2.7), (2.8)
are met as well.

According to (3.23) we have

=0, 6,50 (4.1)
or d /%0, 0;=0 ! (4.2)
and ! vy=0, §;+0 - (4.3)
or ' vi#0, =0, (4.4)

28



)

Let us assume that the optimal de51gn corresponds to (4.2) and (4.3).
It means that the adjoint variable A is continuous everywhere.
Performing the integration in (3.20) one obtains

e (4.5)
A= (2tpi*+Ei)o
for o= D, i=0, ..., n. Taking into account (3.21) and the continuity
requirements, one can determine the integration constants as
S oy & - 1
E‘—l E,—*-‘2t(1‘ (q’; ‘pl—l)’ i n, n l, ey l, (4'6)

n—_—'—'2t’\pn.

Substituting (4.5) into (3.22) and performing the integration leads to
the following equations

Vs? —al—Vs?—al, i+2y (.‘pi-lal_lpialﬂ) =0, (4.7)

j+1

where 1 0, ..., n. Making use of (3.6) and (2.8), one can integrate the
Eq. (3.8) to 1ve
¥ 0 g

The second equation in (2.3), after substitutions of the quantities
mgy, n,, w’ according to (3.7), (4.8), (3.4), gives

Vi 4 p
ml-——-Ts'*t? 4—f—--3— Wyt o3 —( wg ~+2wot — 2t2+-6—-) o’ +
C
+am(e— ety — @—0"+B -, oD (49)

The integration constants Bj;, C; can be determined with the aid of
the continuity requirements of the bending moment m; and the shear
force at p==a; and (2.8). Therefore,

Srans (4.10)
C/=C].—l"-(1[(’Y3—'Y?_I), i=lv--')n'
Combining (4.9), (4.2), (3.13) gives
i 4 p )
C] Sty -thas +— wota‘ ( wg +2th poas 2t2'+.6— (1‘7. +
+3wo(UJo—t)a2l— (Wo—t)2ai=0, j=1..., n. (41])

Making use of (3.16) and (4.5), the equation (3.29) may be pre-
sented as

Gm—v) T mle) =i v+“/(w°(%,—‘)+t(“'“zl,“))2+

Vs?— al?

2
my(a;) — yj—1i
a;

“+4n,(a;) (ta; — wo) +—F2)— a; ] +"Pf—lai[ s

4 (wo( El,-"_ 1) +t( e 57) )2 +-4n,(q;) (ta; — @) +—F2,—a,-] =0.
(4.12)
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Finally, the boundary condition for the bending moment m; in (2.7) yields

Cn+

8 5 p
B e W A i Lo ba? e
5 ¢ 3 wot +wj 6 +v2 =0. (4.13)

The set of equations (4.6), (4.7), (4.10)—(4.13) serves for determining

the unknown constants v;, E;, C; and parameters a;,y: (i=0, ..., n; j=
=l ..y 1),

5. Discussion
The numerical results for the shell with two thicknesses are presénted

in the Table. The geometrical parameters have the following values:
{=0.7;-s=2.

Optimal parameters of the shell with one step in the thickness

[Wol [p] o Yo Vi e

0 9.200 0696 1.098 0.725 0.9054
T 10.460 0.738 1.083 0716 | 09095

0.2 11.840 0.772 1.071 0.708 0.9235

0.3 13.340 0.799 1.062 0.701 0.9307

0.4 14.960 0.822 1.0545 0.695 0.9370

The economy of the established optimal design could be assessed by
the coefficient

J

e — ——

¥y

where J is the optimal volume (3.14) and V. stands for the volume of
the reference shell with constant thickness:

Vi=s—V)s2—1.

The values of the economy coefficient are accommodated in the last
column of the Table. The calculations carried out show that the utilization
of the structure with two different thicknesses enables to save 9.59% of
the material, provided the shell operates in the limit state. The saving
decreases with the increase of deflections.

30



REFERENCES

1. Mroz, Z. and Gawecki, A. In: Optimization in Structural Design (Ed. A. Sawczuk
and Z. Mroz). Springer, Heidelberg et al., 1975, 518—540.

2. Lellep, J. Optimization of Plastic Structures. Tartu Univ. Press, Tartu, 1991.
3. Duszek, M. In: Theory of Thin Shells (Ed. F. Niordson). Springer, Heidelberg et al.,
1969, 374—388.

4. Sherbourne, A. N. and Haydl, H. M. ZAMM, 1974, 54, 2, 73—82.

5. Kondo, K. and Pian, T. H. H. Int. J. Mech. Sci., 1981, 22, 69—76.

6. Lellep, J. and Hein, H. Tartu Riikl. Ulik. Toim., 1988, 799, 37—51.

7. Lellep, I. and Hein, H. Tartu Ulik. Toim., 1992, 939, 54—69.

8. Lellep, I. and Sawczuk, A. Int. J. Solids and Struct., 1987, 23, 5, 651—664.

9. Onat, E. T. and Prager, W. Proc. Netherlands Acad. Sci., 1954, B57, 334—348.

Recaived

July 9, 1992

Helle HEIN, Jaan LELLEP

ASTMELISELT MUUTUVA RISTLOIKEGA LAMEDATE PLASTSETE KOORIKUTE
OPTIMAALNE PROJEKTEERIMINE

On vaadeldud astmeliselt muutuva paksusega lamedat sfdérilist koorikut, millele
mojub {ihtlane vilisrohk ning mis on serva mooda 3arniirselt kinnitatud. Kooriku mater-
jal on jdikplastne ja allub Tresca tingimusele ning vastavale gradientaalsuse seadusele.
Kasutades optimaalse juhtimise teooria variatsioonmeetodeid on tuletatud vorrandid
selliste paksuste ja paksuse hiippekohtade miadramiseks, mille korral kooriku ruumala
on minimaalne etteantud koormuse ja ldbipainde puhul. Saadud vorrandid on lahenda-
tud numbriliselt.

Xeanre XEHH, flan JIEJIJIEINT

ONTHMAJIBHOE MPOEKTHPOBAHHUE NJNACTHUYECKHMX MNOJIOTUX OBOJIOYEK
CO CTYNEHYATbBIM MONEPEYHBIM CEYEHHUEM

PaccmarpuBaercst 3ajzaua onpejiesieHHst MPOEKTa MHHHMAJbHOrO Beca MOJOTHX chepH-
YECKHX O0G6OJIOYeK CTYNeHYaTo-NOCTOAHHON TOJIHHBI, MOABEPKEHHBIX JeHCTBHIO paBHOMeEp-
HOrO BHeINIHero Aassenns. Kpas o6osouek CUHTAIOTCA WAPHHPHO 3aKpemieHHbIMH. Matepuas
000JI04€K KeCTKOMJIACTHYECKHH, MOAYHHAIOMMACS yCcaoBHI0 naactuyHocTH Tpecka H acco-
UHHPOBAHHOMY 3aKOHy AedopMuposannd. C NOMOIIBIO BAPHALHOHHBIX METOJ0B TEOPHH
ONTHMAJILHOTO YNpaBJIeHHA BBIBOAATCS YCJOBAS JJA ONpPejesieHHsi Pas3/HYHLIX TOJIHH H
KOOpIHHAT CTyneHeil, MPH KOTOPHIX o0beM Marepuasa jAocTHraer MmunuMyma. [Toayuennas
CHCTEMA ypaBHEeHHIl pelllzeTcsl YHCJISHHO.
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