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MODAL RESONANCES IN PROBLEMS OF ACOUSTIC WAVES
SCATTERING BY ELASTIC SHELLS

(Presented by . Engelbrecht)

Abstract. The problem of an obliquely incident plane acoustic wave scattering by a
circular cylindrical shell is considered. A procedure to isolate the modal resonances is
presented for this example. An approach is outlined for the determination of the
numerical characteristics of each resonance.

Introduction

As it is known [!], the resonance frequencies of the peripheral waves,
generated by an incident wave in an elastic scatterer, coincide with
those of partial modes. The resonance scattering theory [2-°] is an effec-
tive tool for the description of the resonance components of partial modes.
According to this theory, specially chosen backgrounds are used for sep-
arating the resonance components. Firstly, the rigid and soft backgrounds
have been used, and then various kinds of intermediate backgrounds
have been proposed [¢-'°]. Formally speaking, when the type of the
background is chosen, one can compute the resonance components of
partial modes. Actually, the things are not so simple. Below it will be
shown how one should practically act in order to compute the resonance
components of partial modes and to determine the parameters describing
the resonance. In this connection three questions are discussed here: the
choice of the background, the choice of the computational step size, and
the discrimination of closely located resonance components. All the nota-
tions used are the same as in paper [°].

1. The background specification

According to the procedure of the resonance scattering theory [?], the
difference is formed between the partial form function and its background
in order to separate the resonance components of a partial mode. As it is
noted in [?], even with the fixed physical parameters of the scatterer
(0s, €1, ¢t, and h) one cannot use one background only for all the types
of peripheral waves generated in the scatterer by the incident wave. Even
more, the type of the background for each peripheral wave depends
generally speaking, on the frequency and the ordinal number n of the
resonance.
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Usually, the computation of the resonance components of partial modes
is organized in the following way. Firstly, according to the standard
recommendations [*6] and some unrigorous heuristic considerations, the
type of the background is specified for some frequency range xa<<x<<Xs.
Then the modulus of the difference |fa(x) —fa(x)| is calculated with
some chosen computational step size I, for successively increasing n
values. Such a function has typical extrema which are numerated in suc-
cession with increasing variable x. Each extremum is labeled by two
indices xnm (the first index shows the ordinal number of the resonance,
i.e. the number of the wave lengths which fit the path of the peripheral
wave, and the second index defines the type of the wave). With the cor-
rectly specified background and sufficiently small computational step
size, the coordinate x.» defines the resonance frequency. Here the maxi-
mal amplitude of the partial mode is located precisely at the resonance
frequency (see Fig. 1).
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Fig. 1. Modal resonances in a bounded frequency range. The computation has been

carried out for the problem of scattering of an obliquely incident plane acoustic wave

by a circular cylindrical shell (An aluminium shell immersed in water; the physical

parameters are defined in [1°]; the relative thickness of the shell is A=1/10; the angle

of incidence is ae=13° the observation angle a,=0° the observation point is situated
in the far field (r— oo); the rigid background has been used here).

With successively increasing n, due to defocusing of the functions
frm(x) and fam(x), a situation can occur when, for the specified type of
the background, a minimum will be situated on the resonance frequency
instead of a maximum (see Fig. 2). It is clear that the background has
become inadequate and should be changed. The resonance component
can be isolated when the correct background is used (see Fig. 3).
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Fig. 2. The character of changing the dependence |f.(x) —fn(x)| in the vicinity of

the T, wave resonance with n=86—90 (An aluminium shell immersed in water;

h=1/32; ay=10°% a,=0°% r— o). Here typical minima occur at the resonance
frequencies due to the inadequacy of the (intermediate [®]) background used,
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Fig. 3. Modal resonances of the T, wave when proper (soft) background is used.

The specified intermediate background was completely adequate for
the T, wave when I<<n<C50. With n increasing, the background deterio-
rates gradually, and by n~90 it entirely failed. Here, on the resonance
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curve of the partial mode its asymmetry becomes more evident, the curve
becomes twisted, and with further.n increasing in the neighbourhood of
the resonance frequency first a typical “hook™ is observed instead of a
usual resonance curve, and afterwards even a minimum. So, with the
specified type of the background for some n value, in order to be sure
of the adequacy of the background, one should keep an eye on the sol-
ution. The curves |fam(x)| and |fam(x)| should be computed for every
resonance. In the considered x range, they must coincide everywhere
except for the range where the resonance occurs. Near the resonance
frequency the modulus of the difference |fam(x) — fnm(x)| should have
a form of a resonance curve. Theoretically, an effective background can
be specified for every n value, but it should be chosen individually [*°].

2. Specification of the computational step size for modal resonances

Often high- and low-quality resonances can be situated in the same
range of frequency and ordinal number. In Fig. 1, the example of such
a situation is shown, where the resonances of shear waves T, and T,
have high Q-factor and those of the zero-order symmetrical Sy and anti-
symmetrical A, Lamb-type waves have low Q-factor. The curve presented
in Fig. 1 has been calculated with the computational step size l,=10/256.
This step size is extremely small for the resonance curves of the S, and
Ao waves, and is excessively large for those of the T, and T, waves.
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Fig. 4. The same as in Fig. 1, but only for one (the 50th) resonance of the T, wave.
The computation has been carried out with sufficiently small step size.

The resonances of the Sy and A, waves could be computed with a step
size ten times larger without any damage to the description. And vice
versa, in order to trace the quality character of the Ty and T, waves, this
step size should be reduced approximately one hundred times. In Fig. 4,
the resonance curve of the Ty wave is shown with n=>50, computed with
the needed step size (/,=0.1/256).
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Since there are frequency and order domains where the resonance
components of partial modes change very fast, the complementary com-
putations should be carried out with a smaller step size besides the com-
putation with standard step size in these ranges. The resonances of the
T, and T, waves near the cut-off frequencies can be indicated as an
example of such fast changing resonance curves. The resonances of the
S, wave near the frequency where the overall reduction is compensated
by the transverse reduction are also very fast changing (this effect has
been described earlier [!*!']). Generally speaking, the resonance of every
peripheral wave has its own specific rate of changing of the frequency, de-
pending on the n value. The computational step size I, should be specified
in such a way that in the active zone of the resonance curve, i.e. situated

above the level 1/)2 of the resonance amplitude, the number of steps will
be sufficient.

As the results of computation have shown, in spite of the superposi-
tion of two resonances situated near each other, the amplitude of the
superposition does not exceed the level of a separated resonance (the
formulas for the.amplitudes of resonances are given in ['?]). Therefore,
with correctly specified computational step size and evident (strongly
pronounced) form of the resonance curve, the width of (even very
narrow) resonance can be found directly from the resonance curve.
As can be seen in Fig. 4, with correctly specified step size, the influence
of a resonance of another family (with the same ordinal number) can be
neglected.

3. Discrimination of neighbouring resonances

The isolated — without any superposition — resonances are a rather
uncommon exception. The resonances of the Sy and A, waves with n=50
can be used as an example of such. As a rule, the resonances are ob-
served in a form of superposition (see, for example, Fig. 1, where the
resonances of the Ty and T, waves with n=46 — 60 are superimposed on
the S, wave resonances). The procedure of the resonance separation
depends on how close the resonance frequencies are located and how
strong their mutual influence is.

Closely located resonances with essentially different qualities

In Fig. 5, a typical result of superposition of two resonances is
shown. The superposition of the T, wave on the S, wave does
almost “spoil” the resonance curve of the S, wave, except its right
“tendril”. Even for the case when a resonance with high Q-factor is
situated in the active zone of the Sy wave, its influence could be neutra-
lized by using only the left part of the resonance curve. Here the res-
onance curve of the Sy wave is rather wide and its left part is fully suffi-
cient in order to describe the whole resonance curve. Therefore, one could
neglect the influence of the T, wave resonance on the resonance curve of
the So wave. Vice versa, the S, wave resonance strongly influences the
narrow, with a high Q-factor, resonance of the T, wave. One cannot
understand where the resonance frequency of the T, wave is situated, i.e.
whether it coincides with the minimum (x=86.1) or with the maximum
(x=86.8). The computation has shown that in this situation the change
of the type of the background, i.e. the utilization of the rigid (or soft)
background instead of the intermediate one, does not improve the matter.
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Fig. 5. The character of changing the dependence |fn(x) —fa(x)| with n=18 (An
aluminium shell immersed in water ['°]; A=1/10; 0y=12° a,=0°% r— oo; the inter-
mediate [°] background has been used here).

Here the background used is entirely adequate: one can judge this by
the resonance of the Sy wave, which is situated just at the right frequency.

Since the procedure used for the T, wave fails, some other should be
found. Two different approaches can be used in order to determine the
resonance frequency of the T, wave. First, one could apply the Sommer-
feld-Watson transformation ['3!4] to the solution in the series form and
find in the complex v-plane the pole corresponding to the T, wave. This
pole should be found only in a restricted x range — the one in the vicinity
of the T, wave resonance frequency. Now the resonance frequency is
found from the condition Rev=n. The imaginary part of the pole posi-
tion in the complex v-plane at the resonance frequency Imv (at v=n)
defines the damping factor of the peripheral wave and gives the width of
the resonance. The other way of the investigation of a resonance with a
high Q-factor, in the considered case of the T, wave, is the computation
of the time dependence. Here the partial form function (in the considered
example with n=18) should be integrated in a sufficiently long-time,
that is narrow in the frequency range, incident pulse. With a specified
pulse frequency, one should watch the character of changing the time
dependence. When the frequency coincides with that of resonance, the
time dependence changes monotonously, and when the frequency coincides
with that of antiresonance it will be “swinging”, that is, in one turn it
will be amplified, and in the other turn attenuated (the time dependences
of such kind are shown in Figs. 3.16, 3.14 in ['°]). It is easy to find the
position of the resonance frequency using the results of computation for
some typical values of frequencies. The damping factor (and the width of
the resonance) can be found from the damping of the wave on the path
of one full turn.
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Resonance with almost (or entirely) coinciding resonance frequencies

The situation at which the resonances of two peripheral waves are
located on the same frequency is more complicated. This situation is
typical for the frequency at which the dispersion curves of two peripheral
waves are intersecting (see, for example, Fig. in ['®], or Fig. 1 in ['7]).
Here the Sommerfeld-Watson integral transformation should be used for
the exact determination of the resonance frequency. One can find the
resonance frequency and the width of the resonances by computing
the positions of the poles corresponding to the two discussed waves inthe
complex v-plane. It should be mentioned that the computation of the
poles should be performed not for all the types of peripheral waves, not
for all frequencies, and orders of resonances, but only for those which are
of particular interest. We stress that only the poles — and not the resi-
dues in the poles — should be computed. By this the time needed for
computation becomes considerably reduced and acceptable.

4. Concluding remarks

Above, the practical approaches to separating the modal resonances
are outlined for the scattering problem with an obliquely incident plane
acoustic wave by a circular cylindrical shell. They can also be used for
scattering problems by spherical shells and by solid elastic bodies.

During the computation of the resonance components of partial modes
one should watch the adequacy of the background used as well as the
computational step size. When the resonance frequencies of the same n
order but for different peripheral waves are located near to each other,
the standard approach of the resonance scattering theory cannot be used,
and it should be substituted by another. Here, in particular, the Sommer-
feld-Watson transformation is very effective.

As the experience of the computation and analysis of modal resonances
has shown, in the problems of scattering by elastic shells of cylindrical
and spherical shape, it is advantageous to solve a model problem before
computing the resonance components of partial modes; namely, concern-
ing the propagation of waves in a plane elastic layer. In order to find
the resonance frequencies, a “dry” — without any contact with liquid,
- layer can be used ['®]. A layer in contact with liquid should be con-
sidered in order to find the resonance width ['°]. The solution of the model
problem gives an opportunity to understand which difficulties arise at the
solution of the main problem. The computation of the model problem is
very simple and ‘“cheap”, but the gain is rather large, because almost all
the features of the problem become clear.
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Naum VEKSLER

MODAALSETE RESONANTSIDE LEIDMINE AKUSTILISELT ELASTSETELT
KEHADELT HAJUMISE ULESANNETES

Statsionaarse hajumisiilesande ndite varal on esitatud akustiliselt kehalt kaldu
langeva tasapinnalise laine poolt tekitatud partsiaalsete moodide resonantskomponentide
praktilise arvutamise protseduur. Seoses sellega on vaadeldud kolme kiisimust: alustiiiibi
oiget valikut, arvutussammu leidmist ja sageduse jargi ldhedaselt pa1gutatud resonant-
side madramist.

Haym BEKCJIEP

MOJAJIBHBIE PE3OHAHCHl B 3AJIAYAX PACCESHMUSA AKYCTM'-IECKI/IX
BOJIH YIIPYTUMHU OBOJIOYKAMH

Ha npumepe craunoHapHOii 3aJayu paccestHHsi HAKJIOHHO MajAalollell MIOCKOH aKyCTH-
YeCKOil BOJHBI JAaBJIeHHSi KPYroBOil IHJIHHAPHYeCKOH 060/04KOH H3jaraercs mnpoueaypa
NPaKTHYECKOrO pacyera Pe3OHAHCHBIX KOMMNOHEHTOB MaplHaJbHbIX MoA. B 3Toit cBsA3uM pac-
CMATPHBAIOTCA TPH BORPOCA: O NPABHJbHOM BbIOOpe THNA OCHOBaHMS, O HA3HAYEHHH Iluara
cueTa MO 4acToTe H O Pa3jHYEHHH Pe30HAHCOB, 6JHM3KO PacnoJoXKeHHBX IO uYacToTe.
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