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- The heartbeat is one of the most familiar and steady rhythms known
to mankind. An abnormally beating heart may display a complex variety
of beat types, such as ventricular tachycardia and fibrillation. In terms
of nonlinear mechanics some of the beats could be named chaotic —

that explains the growing interest in these fascinating problems [!-?].
However, the mathematical modelling of such complicated biological
processes as the heartbeat is not undertaken in order to predict all the

possible phenomena but rather to use mathematics to open our eyes to

possible physical mechanisms under consideration.
The normal pacemaker of the heart is the sino-atrial (SA) node that

is actually a collection of cells with spontaneous automaticity [']. The

impulse then propagates through the atrioventricular (AV) node, which

gives a certain delay and may affect the rhythm of the SA node (inverse
interaction). Then the pulse propagates down to the ventricular muscles

through the bundle of His (nerve fibres) which later takes the form of
fractal-like Purkinje fibres. The latter conduct the electrical impulse
to the myocardium, causing a nearly synchronized contraction of the
ventricular muscle. What is usually measured, is the electrocardiogram
(ECG) that gives a complex picture of dynamic activities in the heart.
In physical terms, the rate of the pulse (action potential) is measured.
A typical ECG is shown in Fig. 1 with traditional notations [3].

The first known mathematical model of the heartbeat was proposed
in the late twenties by van der Pol and van der МагК [*], using a non-

linear ordinary differential equation of the form

@*г аг
?

dt? (2) dt oy 2=o, (1)

where z(f) is the voltage, wo is the natural frequency and

F(z)=a(l —2%), a=const. (2)
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Actually, van der Pol and van der Mark constructed electronic circuits
modelled by Eq. (1), and their physical model consisted of three non-

linear oscillators, i.e. three coupled electrical circuits corresponding to
SA node, AV node and ventricles. Subsequent models have used the van

der Pol relaxation oscillator, for example Katholi et al. [®] have used two

weakly coupled van der Pol equations to model SA and AV nodes. Later
however the main attention was directed to investigating the coupling
effects and the type of equation was different [%¢]. Within the frame-
work of nonlinear dynamics, the importance of mappings (based on

Poincaré sections) became clear, and this idea is also widely used to

analyze heart dynamics (see, for example [7]).
In principle, there are two distinct physical mechanisms in the

heart — the pacemaker and nerve-pulse transmission. The pacemaker is

an oscillating structure (involving SA and AV nodes), and the signal is

then transmitted through complicated nerve bundles and fibres (His
bundle and Purkinje fibres) to myocardium. The mathematical models
used up to now are based on equations of oscillatory character (involv-
ing limit cycles). Recent investigations have used for nerve pulse trans-

mission the novel technique of evolution equations that has resulted in

equations very close to the celebrated van der Pol equation. Namely, the
nerve pulse transmission is governed by an evolution equation [ °]

o%z 0z
—'д—ё"д;'-і—і(г) “s{'l'B‹2)'—o› - (3)

where z is the scaled action potential, & is the moving frame and x the
axial coordinate. Functions f(z) and g(z) are responsible for attenuation

and/or amplification. Function g(z) is usually linear, but f(z) is a

quadratic polynomial with roots 2;, z; obeying

21>0, 2,>0, 25z (4)

When a constant profile is sought, then Eq. (3) is transformed into
the O.D.E.

2"+f(2)2'+06"1g(2) =O, (5)

where ()'=d/dn, n=x+o&, oO=const. The celebrated van der Pol

equation (cf. Eq. (1)) belongs to the same class of Liénard equations,
but in this case the roots of F(z) satisfy the conditions

2гl<<o, >O, (6)

Fig. 1. Traditional ECG.
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The crucial difference between the values of roots (cf. conditions (4)
and (6)) leads in one case to the limit cycle, i.e. to relaxation oscil-

lations, in another case — to a single pulse. The reader is referred to [?]
for details.

The main idea here is to construct a mathematical model of the heart as

a system of coupled equations combining the equations with oscillatory-
type solutions (SA and AV nodes) as well as the equations with pulse-
type solutions. The principal scheme is shown in Fig. 2. Clearly, the
model can be combined both with two elements (one oscillatory andone
pulse-type) and with three or four elements.

The preliminary results are obtained using an equation with pulse-
type solution with a periodical driving. The equation, when presented as

a system of the first-order equations, is

(7a)2/=—uy,

Yy’ =0.13837 (—2541.52 — 0.0152%) y+2+A sin Bi. (7b)

The results of integration are shown in Fig. 3 for A=loo, 8=0.87
and z(0)=0, y(0)=—80. The resemblance of the derivative to the
normal ECG (Fig. 1) is striking but in fact this diagram reflects
2:1 blocking. Actually, in the next stage the periodical driving will be

replaced by the coupling term from the oscillatory-type equation
modelling one of the nodes. Apart from the normal behaviour,
attention must be paid to possible chaotic solutions giving evidence
of arrhythmias. Here the coupling between the elements is of utmost

importance. In Eq. (7), the driving was through acceleration (i.e.

through force) but driving through velocity also needs attention E“’].
This paper is the first in the series reflecting research with n-element

models which is in progress.

osgitiatory oscillatory pulse-type pulse-type

Fig. 2. Structural scheme of the mathematical model.

Fig. 3. Solution of Eq. (8). Solid line — solution, dashed line — its derivative.
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