LUHITEATEID # SHORT COMMUNICATIONS
KPATKUWE COOBWEHUMA

https://doi.org/10.3176/phys.math.1993.1.12
Proc. Estonian Acad. Sci. Phys. Math., 1993, 42, 1, 119—123

UDC 534.21

Mati KUTSER*

ON PRINCIPLES OF AFTEREFFECTS AND NONLOCALITY IN
CONTINUUM MECHANICS

Mati KUTSER. JARELMOJU JA MITTELOKAALSUSE PRINTSIIPIDEST PIDEVA KESKKONNA
MEHAANIKAS

Maru KYTCEP. O TIPHHUMITAX TIOCJIEAEVICTBHUS MW HEJIOKAJIBHOCTH B MEXAHUKE
CIIJIOIIHOWM CPEJbI

(Presented by I. Engelbrecht)

Several new scientific ideas have been formed at seminars chaired
by Nikolai Alumée in the Institute of Cybernetics. The idea of classifi-
cation of principles for generalization of constitutive equations belongs
to Uno Nigul, who has used it in his unpublished lecture notes. The
author of this note feels his duty to explain this idea to larger audience
in more detail.

Generally speaking, the conventional constitutive equations in con-
tinuum mechanics emphasize the instantaneous dependencies. As a result,
the equations of motion are then of differential type.

In this note, the main principles for generalization of constitutive
equations and respective equations of motion are presented. It is shown
that there are two main classes to be analyzed both leading to integral
(or integro-differential) type of governing expressions.

Wave motion of solids is governed by the conservation law of
momentum that actually is Newton’s second law. This is, however,
expressed in terms of stress and deformation. Consequently, in order to
define a full governing system, a constitutive law is needed relating
stress to deformation. A similar situation occurs also, for example, in
electrodynamics, where a constitutive law connects voltage and current.

The constitutive equation is generally an empirical relation based on
experiments. In mechanics of solids, usually Hooke’s law is used empha-
sizing the proportionality of stress to deformation. In general terms

A=EB. (1)
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In this expression variables A, B and constant E are meant to have
the instantaneous values. Actually, in reality, this dependence may be
much more complicated, the variables being dependent on time and/or
space coordinates.

Up to now, there is no clear distinction between possible variants of
constitutive equations. Here, in order to get more generality, instead
of algebraic equations like (1) emphasizing instantaneous effects, we shall
use integral (or integro-differential) relations with certain kernels.

There are two basic principles how the variables A(x, ) and B(x, ()
can be related:

1) the principle of aftereffects: characteristic parameters of process in
a certain point of space at a given moment of time ¢ depend on the
history of changing values of these parameters in the same point of
space (time-dependent processes);

2) the principle of nonlocality: characteristic parameters of the process
at a certain moment of time ¢ depend on the values of these parameters in
other points of space at the same moment of time ¢ (space-dependent
processes).

The constitutive equations constructed according to principle 1 are
widely known in mechanics of solids, particularly in the theory of visco-
elasticity with several types of kernels ['~*], but there are much fewer
examples corresponding to principle 2 [*7]. Even more, one could
intuitively join both the principles but no serious investigations in this
field are known to the author. :

The basic idea of the theory using principle 1° may be presented by
expression [?]

A(x,t)=E(x,t){B(x,1) — R(t) ¥ B(x,1)}, (2)

where A(x,f) is a one-dimensional variable (for example force or mech-
anical stress o), B(x,t) is a dimensionless variable (for example relative
deformation ¢), R(f) denotes the relaxation kernel, positive function
E(x,t) has the same dimensions as A(x,{), and the following type of
notation of the convolution integrals is used

F(t)*G(x,t)=oftF(t—t)G(x,r)d1:. (3)
Then expression (2) may be presented as
A(x,t)=E(x){B(x,1) ——(SftR(t—r)B(x, t)dx}. (4)

Single-integral models represented by integral equations (2) or (4)
give an opportunity to calculate A (x, f), knowing the «history» of B (x,{),
with a certain weight. In wave propagation and oscillation problems
such single-integral models also describe the influence of dissipative
effects.

The equation of motion governing one-dimensional waves in solids
may be presented in the form

0?U (x,t) do(x,t) ol

b
ot? 0x ’ (3)

with the initial conditions

oU (x,0) b

U (x,0) =0, =

0, o(x, 0)==0. (6)

Here U denotes the displacement.
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Denoting in the constitutive equation (2)

A(x,t)=a(x,t), B(xt)= =¢g(x, 1), (7)

oU (x, t)
ox
one can get the equation of motion in terms of U(x,t). However, in
order to draw later parallels with equations derived according to
principle 2, we use the factorization that permits to split the second-
order Eq. (5) into the first-order equations describing single waves, For
the wave propagating in the positive direction of x, we get [?]

t

oU (x, ¢ U (x, ¢ U (x,
g’: )+c{ o(; ) —S/Rl(t—r)—%t—)—dr} il (8)

Here R,(f) denotes the modified kernel function which, due to factori-
zation, is related to R(f) by

R(0)=Ri(t) — = Ri () # R (1), 9)

We assume that R,(f) (like R(t)) is a positive function bounded in
the interval 0<<{<Coo and satisfying the conditions

t

lim [ Ry (v)dv=0, (10)
-0 0

R (t) >0 if ¢— oo. (11)

It means that relaxation kernel R,({) is an integrable function in
all its domain of determination. In most cases of real processes the
relaxation kernel R;(¢) (or R(t)) is a monotonously descending function
in the whole domain of definition, and it corresponds to the fading
memory principle in the models describing aftereffects [!?]. So the event
in the very past has little impact on the process in the present.

The principle of nonlocality (principle 2) may be demonstrated on
the basis of one-dimensional Whitham equation [5] :

PGt [ k=220 (12)
Here K(x) is a given function. This equation has an elementary solution
p=Aeixx—iot (13)

in the case when
—imer* 4 zK(x——g)ixe""§ dg=0. (14)

From Eq. (14) the phase velocity may be calculated easily in the form

(O]

2 [ k@yemar (15)

%

The right-hand side of (15) is the Fourier transformation of the kernel
K(x), and therefore we have

oo

K(x) =?1; ¢ (x) eix* dx, (16)

—00
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So we may construct the equation of the type (12) for arbitrary
phase velocity or, which is the same, for arbitrary dispersion relation,
using the Fourier transformation for obtaining the kernel K(x). For
example, if we take the phase velocity in the form of series

c(x)=co+cax’+ ... +Comn?", (17)
the kernel
K(x)=cod (x) — c28” (x)+ ...+ (—1) ™Com?™ (x) (18)
substituted into (12) yields

o o P - 7h
—a—t—H-Co . =3 e + ...+ (1) =0, (19)

Here 8(x) denotes the delta-function. The first three terms in (19) give
the linearized Korteweg-de Vries type equation, i.e. a differential
equation. In this case (simple kernel (18)) nonlocal interactions are not
taken into account.

Denoting ¢=U, equation (12) can be rewritten

Ut f oU® ) .
o+ | Ke—p e =0 (20)

that should be compared to the Eq. (8). The basic difference of
the kernels demonstrates the difference between the principles of after-
effects and nonlocality.

The dispersion relations may be of a very complicated form and it
is sometimes a rather difficult task to find out the exact kernel function.
As shown in [], asymptotic analysis may still lead to acceptable govern-
ing equations. In most cases, the kernel function is an even function and
decays if x — oco.

Nonlocal interaction is of importance for describing geometrical
dispersion caused by internal (layered) inhomogeneities. Acoustic waves
in a fluid layer are described in [®], and in magnetic flux tubes (slabs
or cylinders) in [7]. A model theory of gravitating particles in quantum
mechanics leads to a certain nonlinear Schrédinger equation with an
integral part [®] that again describes nonlocal interaction.

It can be easily concluded that a constitutive equation describing
nonlocalities should be presented as

A =E@{B(x, O+ [Kx—0BE O} (1)
Here
d
Ax, t)=—g—?—, B(x, t)=-5"-. (22)

Of course, using constitutive equation of type (21) leads to a more
complicated equation of motion than (12).

It may be interesting to construct the constitutive equations which
take into consideration both principles — the aftereffects and the non-
locality. In other words, the effects based on the «memory» of the media
and the dispersion of the energy could be simultaneously accounted for.

The author thanks Professor J. Engelbrecht for very useful discussions
and valuable advice,
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