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Jiri ENGELBRECHT *

COMPLEXITY AND SIMPLICITY

An essay is by the definition a com-

position dealing with a subject from a

-personal point of view and without

attempting completeness.

‚ B. Mandelbrot

When I told a colleague of mine that I would like to write an essay
on complexity and simplicity, to Nikolai Alumée’s memorial issue, then

he, a well-read scientist with a broad outlook on science and life, re-

sponded: “It is not an easy task.” I cannot agree with him more, but then

this is exactly what Nikolai Alumide would have liked. The problem on

one’s desk should always be intriguing ['], he used to say, and I dedicate

this essay to the memory of my Teacher.

Of initial ideas

The eternal rivalry between complexity and simplicity has always been

an intriguing problem to mankind. As our knowledge has been increasing,
many seemingly complex phenomena have turned out to be rather simple
when the reasons behind them have been cleared up. Take, for example, the

motion of planets that ages ago needed special spheres and other geo-
metrical structures to explain their motion with respect to the Earth. Yet, as

soon as the heliocentric system was accepted by the general public, every-

thing became clear and simple. So, thefirst lesson is that, given the reasons,

seemingly complex things become rather simple.
However, the world around us is not only a hide-and-seek game —

there are simple phenomena and there are complex phenomena in it. The

knowledge that God does not play dice, as Albert Einstein has said, is

pleasing but not very helpful. As usual, we first need clear definitions, at

least for the working purpose. According to Chambers [?], simple is that

which consists of one thing or element, complex is what is composed of

more than one or of many parts. Taking these notions as basic, we later
enlarge them intuitively, because, as a matter of fact, the categories
involved are rather abstract.

Here, we shall start from examples demonstrating simplicity and/or
complexity as we understand these phenomena (properties); and it is of
fundamental importance to distinguish between the two, because contem-

porary theories tend to be very complex, so simplification seems to be a
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natural way to solve problems. Here lies a certain risk. A. Toffler mentio-
ned in the Preface to I. Prigogine’s and I. Stenger’s monograph [3]:
“Dissection is one of the most highly developed skills in contemporary
western civilization: the split-up of problems into their smallest possible
components. We are good at it. So good, we often forget to put the pieces
back together again’.

From this, an intriguing problem arises — how to put the pieces back

again, i.e. how to build up complexity from simplicity. Below, we would
like to analyze some steps on this long and difficult way, which may
serve as a backbone for further research. And there are a lot of questions
to be answered before complexity is understood more profoundly.

Of simplicity :

According to what is said above, simple consists of onething or el-

ement, which is a rather open definition. Here we have to rely more on

the intuition that permits us to enlarge these notions without violating
the basic idea. Simplicity in mathematics is related to simple rules, in

physics — to linear causality like “if this is given then that follows”, ete.
Letus proceed with the aid of exemplification.

We are faced with simple rules guite often in our everyday practice.
Engineers widely use Hooke's law stating that stress and deformation
are proportional, Ohm's law — current and voltage are proportional, etc.
These can be considered as simple laws emphasizing simple instantaneous
effects — the larger one variable, the larger also the dependent variable.
The cause and the result are nicely related to each other and proved to
be correct in ever so many everyday examples. There are cases where only
a simple model has opened the eyes of mankind to understand the rules
of Nature. A brilliant example is the planetary model of the atom based
on the ideas of E. Rutherford and N. Bohr.

There are two questions now: (i) is simple sometimes just simplified
and (ii) what is the difference between simple and simple. The latter

question seems to be a tautology but its essence is to widen the notion
of simplicity.

It is quite clear that simple linear laws of physics are applicable only
under special conditions (ceteris paribus). So, stress is proportional to
deformation only if deformation is small. The real world is nonlinear
and Hooke's law is only a simplified version of reality. This is easily
understood when analyzing the properties of potential energy. In Fig. 1

potential energy U is depicted as a function of distance r between the

Fig. 1. Potential energy as a function of

distance between atoms.
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atoms. Around the equilibrium point O, the approximation by a linear
function (dashed line) is justified, otherwise the energy function is es-

sentially nonlinear (higher than quadratic).
In order to answer the second question, we need a certain measure.

Not going into details, an intuitive approach may be used here. In a

physicist’s jargon, the word deep is used to describe the problems “that
would not give way without long looks into Universe’s bowels...”

[4 p. 3]. Simplicity may also be deep. For example, we can turn to

thermodynamics. Such notions as heat, energy, entropy and dissipation
are simple but deep. Let us take the first of them — heat. This notion
was introduced by J. J. Fourier in 1811. The essence of his idea is

surprisingly simple and elegant — heat flow is proš)ortional to the

gradient of temperature. Said Prigogine and Stengers [?]: “ the simpli-
city of Fourier's mathematical description of heat propagation stands in

sharp contrast to the complexity of matter considered from the molecular

point of view”. However, the deepness of this new notion has enabled to

build up thermodynamics based on simple principles. According to

R. Feynmann, this is quite usual in Nature, which is actually a huge
chess game: each move follows simple rules [°]. Nowadays we may ask,
is such an approach still efficient. Some considerations concerning
answers to this question will be given later.

Of complexity

The initial definition of complex (see above) is also certainly rather
naive. One could ask, for example, what is the minimum of complexity
involved that allows us to use the notion of complex. Intuitively we would
like to add some other properties to the initial notion in order to grasp its

fundamental essence.

According to R. Lee [°], contemporary understanding of complexity is

closely related to K. Godel’s paper [®], “focussing on undecidability and
the allied concepts of uncertainty and complexity”. Nowadays our vision
of Nature is undergoing radical changes towards the multiple, the

temporal, and the complex. `
Where does complexity come into the game? One should first distin-

guish between the structural and functional complexities [7]. The first

aepends on the number of interacting subunits and the second on the

length of the algorithm needed to describe the entire behaviour of the

system. Complexity could also arise from the interaction between the

system and its observer [B]. G. Nicolis and 1. Prigogine [°] stress the

importance of natural complexity seen as part of everyday experience
closely related to nonequilibrium states, nonlinear dynamical systems,
predictability, and self-organization. E. W. Packel and J. F. Traub [']
show the importance of computational complexity. This short list may
serve as evidence of many facets of complexity. Here, we concentrate our

attention on natural complexity.
Again, as above, let us discuss some examples. When B. Mandelbrot

in the seventies started to investigate a “simple’” quadratic map

Zn+l=2i +C (1)

with 2,, ¢ complex, the question to him was, “Do you really expect to

find anything new?” As we know now, the Mandelbrot set M (the domain
of convergence of map (1) in the complex plane) is a very complicated
structure, indeed (Fig. 2). It has rightly been described as the most

complex mathematical shape ever invented [!']. Even more, the Mandel-

brot set is another important milestone in the theory of complexity
because from it the notion of fractals has started ['*>'®]. According '0
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[°], the complexity of the Mandelbrot set is certainly’ natural. We shall
later return to this example when we discuss the rules of creating
complexity.

Generally speaking, fractals are complex structures like coastlines,
rivers, blood vessel systems, neural networks, cauliflowers, diesel soots,
polymer grains, colloid aggregates — this list could be prolonged, of
course (see ['*ls]). Let us cite Mandelbrot ['¢]: “Clouds are not

spheres, mountains are not cones, coastlines are not circles, and bark is

not smooth, nor does lightning travel in a straight line... Nature
exhibits not simply a higher degree but an altogether different level of

complexity.” Fractal geometry is progressing [”f, discovering more and
more rules in Nature.

Fractals depict the complexity of irregular and fragmented shapes
in Nature. Besides them, there are many more complex structures
and phenomena. In dynamics, there is a notion of complex dynamical
systems built of units that are themselves simpler systems [!B]. The
behaviour of dynamical systems in multidimensional phase spaces may
be complex (but not fractall) [!'®!°]. The ecological and human organ-
izations are usually complex [3]. Or just an example in physics — gas
as a purely deterministic aggregate of moving molecules that obey
precise dynamical laws [!'], and again it is a complex structure. The

plane- and spacefilling tiling patterns are used not only for covering a

floor or a wall with ceramic tiles but are of the utmost importance in

crystallography [*]. The Penrose decagon tiling is shown in Fig. 3.
What fascinates us in tiling (tessellation) is that Maurits Escher, the
famous Dutch artist, has discovered many exact laws of tiling by just
studying symmetry from an artist’s viewpoint [?']. An example о! his

tiling is shown in Fig. 4.
All these examples still do not allow us to define complexity in a

more definite way. We may list some of the characteristics of complexity:
— we do not easily understand the topological, geometrical a.o. proper-
ties of a complex structure;
— we do not ad hoc understand how a complex system is likely to
respond to a given excitation (change of conditions).

Fig. 2. The Mandelbrot set.
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Of creating complexity

Naive argumentation puts some simple things together in order to get
complex structures. Actually, this basic idea is realized in a more

sophisticated way by means of the following procedures:
— building hierarchies;
— using recursive algorithms;
— using coupling between structural elements;
— taking into account memory effects.
This list is by no means complete.

Fig. 3. Penrose decagon tiling [%]

Fig. 4. Birds after M. Escher [?'].
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There is an important point to take notice of whatever the procedure
to create complexity — the outcome may depend on a set of parameters.
Let us take for example recursive algorithm in the form of a quadratic
map

Xn+l=C—xi (2)

which, contrary to (1), is used in the real domain only. If ¢<<o.7, then
it leads to a stable stationary point after a series of iterations (recurrent
usage о! тар (2)). This is shown in Fig. sa. Intuitively we may call
this result simple. If ¢~0.78, then а bifurcation appears, and instead

Fig. 5. Behaviour of stable points of quadratic mapxn+l=c—x2n:
a) 0<c<0.37; b) 0<c<l1.0; c) 1.72<c<1.82.
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of one stable point two stable points appear (Fig. sb). Let us leave it

open whether this result is still simple or not and proceed with the
calculations for other values of ¢. In Fig. s¢c, the results for 1.72<<c<<1.82
are shown. These results are complex without any doubt! There are

regions where no stable points occur, there is a window where a certain

regular structure appears, etc. Actually, we have demonstrated here the
celebrated period doubling scenario governed by Feigenbaum numbers

[??]. These universal numbers govern the transition to chaos and do not

depend on the algorithms but only upon the fact that period doubling
(flip bifurcation ['B]), appears [!11922]. This gives evidence of the
existence of a certain universality in complex structures.

Returning to the Mandelbrot set (Fig. 2), which is related to the same

quadratic map (2) but in the complex plane, we discover a striking
quality of complexity — its richness. We only need to blow-up thé
structure, i.e. to move to ever smaller scale. This is a real Mathemat-
ical Zoo that can then be discovered with intricate beauty and endless

variety: seahorses, scrolls, whirlpools, Tlumps, sprouts, burgeoning cacti,
thin snakes, coils, insect-like blobs, zigzag lightnings, eic.. [}, The
reader is referred to coloured plates, say in [!’], in order to get some

impression about the beauty of complexity. Lewis Carroll would have

put them into his Jabberwocky, had he, an Oxford don and mathematician,
only known about their existence.

Another example of recursive algorithms could be the construction of
“monster” curves and structures [?]. The well-known Koch curve is

depicted in Fig. 6 with its recursive shapes. We start from a straight
line called initiator (step 0). We partition it into three equal parts and

replace then the middle third by an equilateral triangle, and take away
its basis. This is the generator (step 1) which is then used repeatedly
(in Fig. 6 up to 4 steps). The idea how to construct a Pythagorean tree
is shown in Fig. 7, where an initiator is a square to which a right
isosceles triangle is attached to one of its sides, after which two squares
along the free sides of the triangle are attached, etc. A product where

triangles are non isosceles, is shown in Fig. 8. A cut-off of a cauli-
flower, isn't it?

Fig. 6. Construction of the Koch curve [2].
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The notion of hierarchical systems is used in the information theory
[7] and neural network architecture [?*]. For example, McCulloch-Pitts

neuron is based on a finite number of symbolic expressions reflecting
the behaviour of a single neuron. The combination of simple arithmetics,
classification and storage of information, and recursive operation permits
to build up hierarchical networks as finite-state sequential machines.
Here the coupling is also not to be overlooked.

As a result, we come to the conclusion that complexity can be
constructed as based on rather simple rules: the essential point being
that a structure or system may undergo qualitative changes (bifur-
cations) under the repetitive use of simple rules, or just changing a set

of parameters. Said Prigogine — complexity is created through mech-
anism of bifurcations [%f

Fig. 7. A Pythagorean tree [%].

Fig. 8. Another variant of the Pythagorean tree after 50 steps [%].
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Of main principles

— We have seen that complexity can be created by means of simple
rules. However, one essential keyword was only mentioned rather than

stressed. This is nonlinearity, a peculiar notion emphasized by a negative
prefix. Nonlinearity plays an important role in contemporary science

and much has recently been written on the importance of being non-

linear [%]. Actually, the examples shown above (the Mandelbrot set and
the quadratic map) involve nonlinearity.

To get rid of the habit of using the property of proportionality and the

property of independence (additivity) as basic notions is not so easy
because whole generations of scientists have been trained — in the
sense of Leonardo da Vinci — to grasp the leadin% effects in such a

convenient way. However, F. Hundertwasser said [!"]: “...the straight
line leads to the downfall of mankind. And that line is the rotten foun-
dation of our doomed civilization.” Let everyone decide him- or herself
whether to agree or not to agree with"F. Hundertwasser, but one thing
is clear — with linearity there are no large-scale qualitatively new

results.

- There is a need to distinguish between two opposite routes: from

simple to complex and from complex to simple. The first is wusually
called generalization. Sometimes it is said that mathematical research is

largely a process of successive generalization. Starting from basic

assumptions (axioms) geometry, rational mechanics and other sciences

are built up. The second route is caused by the fact that contemporary
science is often able to construct very complicated mathematical models
that do not allow direct analyses resp. solutions. Then the only way to

understand the process is to find out the main effects. There is certainly
a possibility of losing something in the process of simplification. Never-

theless, the history of science knows many examples of how ingenious
researchers have found brilliant outcomes. One of such examples is no

doubt the Lorenz attractor. The starting point was based on Navier-
Stokes equations modelling the circulation and convection of the

atmosphere. E. Lorenz has found a simplified version of these equations
in the form of a system of nonlinear ordinary differential equations [*"]
(see also [%!1.18]). To his surprise, all the richness of chaotic systems
was in these equations, resulting in an attractor bearing now his name

(Fig. 9). In the 3-dimensional phase-space shown in Fig. 9, the trajec-
tories display a most complex behaviour. Their trace is a kind of a two-

fold spiral structure that looks like a butterfly with its two wings. It is

impossible to predict when a trajectory settled at one wing jumps over

to the other wing, etc. That actually explains why the weather prediction
becomés impossible under certain conditions. What Е. Lorenz actually
did, was to discover the skeleton of a complicated system. Everything
should be made as simple as possible but not simpler, said Albert
Einstein.

Such a route does not always involve a seemingly complex structure
like the Lorenz attractor, the outcome from the simplification could also
be a complicated theory. In this connection, let us mention solitons. This
is again a deep and rich notion of remarkable simplicity [?%2°]. The
route to get to it is very similar to that used by Lorenz: from complica-
ted initial equations a model nonlinear evolution equation is derived, the
solution to which is the celebrated soliton as a simple structure. Again,
Einstein was right — the equation is simple enough but not simpler!
Usually a soliton is meant as the Korteweg-de Vries (KdV) soliton,
i.e. the solution to the KdV equation that propagates without changing
its shape with the amplitude-dependent velocity (Fig. 10). In addition,
the KdV soliton behaves like a particle when colliding with another
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soliton. The simplicity of solitons is deep, relating the governing equation
to classical eigenvalue problems, and in this sense many facets of classi-

cal mechanics become intervowen and get new colour. That is the reason

why the soliton concept is so widely used in contemporary hydrodynam-
ics, plasma physics, solid mechanics, quantum mechanics, etc. The

theories and methods in solitonics, like the inverse scattering theory, the
Painlevé method, the Backlund transformation [?°-3!], are very compli-
cated. The parallel between the concept of soliton and that of heat in the

sense of the deepness of theories based upon these notions is obvious.

Let us point out that the Lorenz attractor represents more structural

complexity, while solitons form a basis to functional complexity.
There are many ways to create complicated systems or structures (see

above). Speaking about main principles, we have to point out one, which,
at the first glance, may seem naive, but it is a powerful approach —

namely, using analogies. Here is a simple example ['']:
— a line segment has 2 end points;
— a square has 4 corners;
— a cube has 8 corners;
— a four-dimensional hypercube has 16 corners;
— a five-dimensional supercube has 32 corners, ,
and so on. This analogy leads to generalizations in a multidimensional

space. The real power of analogies is evident from the Nobel citation
in Physics, 1991, stating that P.-G. de Gennes has got the Prize “for

discovering that methods developed for studying order phenomena in

simple systems can be generalized to more complex forms of matter, in

particular to liguid erystals and polymers.” `
. A natural question arises — how to measure complexity. Leaving

aside the complexity of theories, which is, without any doubt, a fascinat-

Fig. 9. The Lorenz attractor (calculated by V. Miider)

Fig. 10. The Korteweg-de Vries soliton.
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ing philosophical problem, let us discuss physically tractable phenomena
like solutions, maps, structures, etc., i.e. natural complexity. We may

put questions like the following: is fractality of one structure larger than

that of another structure, or is one attractor more chaotic than the other?

Surprisingly enough there actually are answers to these ?uestions. Frac-

tality is measured by Hausdorfi-Besicovich dimension ['*l*], the attractors
are characterized by the spectrum of Lyapunov exponents [!] and

chaotic systems by Kolmogorov entropy K [32f. For a regular system K

is zero, for a chaotic system K is finite, and for a random (stochastic)
system K is infinite. Said I. Stewart: “The brightest ray of light that

chaos sheds focuses on the nature of complexity” [!!].
For further research, a working hypothesis can be formulated:
World around us is based on simple but nonlinear rules which are

applied repetitively and successively, mostly in time.

That is why we see Nature in its most complex way, and that is why
nonlinear science (dynamics) has been so fast developing during the

last decades.

Conclusions

What is said above is certainly not a theory of complexity but the

ideas about its basic rules as the author sees them (cf. motto).
The philosophy of science pays a lot of attention to the essence of

modern and gostmodern (just contemporary) science. According to

P. Rosenau [*], “modern science emphasizes parts rather than wholes,
seeking to explain the totality by the sum of the parts...” On the other

hand, there are two trends in postmodern science: affirmative and

skeptical. Affirmative postmodernists concentrate upon ап unbroken

wholeness, emphasizing the elegance of complexity in the universe and

the richness of difference. Skeptical postmodernists ‘“‘conceive о! the
world as fragmented, disrupted, disordered, and in search of instabilities”

[33]. These are actually two facets of the same core — complex Nature
based upon holistic principles.

Concentrating upon complexity we may also ask whether it could be

a paradigm in contemporary science. The answer is, however, negative —

there can be no paradigm of the complex since this is a notion about

science not a concept of science [3¢].
There is ever so much to be done in understanding complexity. Take

for example the human brain with its 10! neurons and 10' synaptic
junctions. There is an interesting phenomenon in modelling neural inter-

actions — the usual equality of action and reaction encountered in
physics does not hold in the neural network. To build up a fractal system of

neural networks and to link it with cognitive behaviour represents an

intriguing problem of complexity — perhaps one of the major scientific

challenges of the 21st century [?*].
The art of asking the right questions is more important than the art

of solving them, said Georg Cantor, the inventor of a classical complex
structure — the Cantor set. There are many questions about complexity
yet to be formulated. The beauty of Nature lies in its complexity often
made up of simple things.
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