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RITVA KARJALAINEN (Helsinki)

INTERPRETATION OF COMMUNICATIVE INTENTS OF AN INFANT

1. Introduction

The activity needed to understandwhat one wants is purposeful, in other words, an

intent has been proposed (Halliday 1979 : 173). Some previous studies (e.g.
McCormick 1984) investigating the development of children have suggested that
there is no intentionality until the child is at least eight months old. According to

L. McCormick (1984 : 69) the actual communicative acts will occur only when the

child isabout 12—18 months old. M. A. K. Halliday (1979) has investigated his own

son Nigeland found that he gained the ability to propose an intentby the age of nine

months. In expressing such intents as lef’s be together and I'm interested in that Nigel
used intonation contrasts (Halliday 1979 : 173). D. Crystal (1975 : 3) has suggested that

even infants under six months old use prosodic contrasts when wanting something
or recognising someone. C. Harding (1984 : 128—129) observed 12 children and their
mothers for a period of five months when the infants were approximately six

months old. The results indicate that the mothers interpreted their children’s gestures
as intentionalat about 6 months of age but the vocalizations were not interpreted as

intentionalbefore about B—lo months of age. However, E. Bates (1976: 52) has sug-
gested that the hunger-cry of an infant of only 17 days of age is interpreted as

intentional by adults. According to J. Locke (1995 : 133) the listenerconsiders the
vocalization of a neonate as intentional despite the fact that it is not.

The aim ofmy study was to investigate whether the voicing of an infant may
be interpreted as intentional during the pre-lexical period (in this study from 2

weeks to 8 months). I mean by the term communicative intent a child's conscious

aim to change or maintain his or her own circumstances.

2. Method

Forty voice-samples, duration 272—19 622 ms, of a female infant (from the age of
16 days (= 0;0.16) till 7 months 26 days (= 0;7.26), see Table 1) were tested by 33

adults (25 females, 8 males), 20—70 years, under two conditions: 1. only auditory,
and 2. auditory-visual. In the auditory section the subjects heard each vocalization

sample 5 times, and in the auditory-visual section only once. The pause between
two vocalization samples was 30 in the auditory section, and 50 seconds in the audi-

tory-visual section. The subjects were asked if the vocalization sample was inten-

tional or not. They also had the chance of answering "I don't know”. If they con-
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sidered the sample intentional they were asked to classify it according to 9 cate-

gories:
H = asking for attention (= hakee huomiota),

P = asking or demanding something other than attention (= pyytää tai vaatli jo-
takin muuta kuin huomiota),

V = resisting or refusing (= vastustaa taikieltäytyy),
K = conversing (= keskustelee),

U = calling for some one (= kutsuu),
T = greeting (= tervehtiüi),
Y = questioning (= kysyy),
N = naming (= nimeää),
M = something else, if so, what? (= muu: mikä?).

3. Results

The results of this study indicate that vocalizations are interpreted as intentional

from the very beginning of development. Either the interpretation of intention

increases as the infant grows or the interpretation of intention is easier as the

child grows. This is valid both for the auditory (p < .01) and auditory-visual (p < .01)

sections (see Figures 1 and 2).

Table 1

Summary of the testing material

Figure 1. The answers (is not intentional” (= EI INT.), ”I don’tknow” (= EOS) and "is inten-
tional” (= ON INT.)) of the subjects (n = 33) in the vocalization samples (n = 40)

in the auditory section.

Child’s age Duration of Number of Number of selected

recording vocalization samples/ vocalization samples
recording session

0;0.16 15 + 4

0;0.28 15 10 4

0;1.26 28 10 5

0;3.7 45 23 4

0;4.7 45 57 5

0;4.26 36 40 4

0;6.1 30 29 5

0;6.29 30 45 4

0;7.26 42 9 5
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The data shown in Figure 1 indicates that in the auditory section less intention in

the vocalizations (n = 8) of an infant under one month of age was perceived than in

the vocalizations (n = 9) of an infant over one but under4 months ofage (p < .05). The

answers (n = 66) in the auditory and auditory-visual sections show that seeing the

circumstances of the vocalization increases the number of "is not intentional” answers

(p < .05). The auditory section of this test was considered more difficult than the

auditory-visual section given the number of "I don’t know” answers (p < .001).

3.1. The interpretation of vocalizationsof an infant under one month old

In this study even the vocalizations (n = 8) of an infant under one month of age
were interpreted as intentional. ”Is intentional” answers outnumbered both "is

not intentional” answers (p < .001) and "I don’t know” answers (p < .001). In the

auditory section the number of answers where the category of intent suggested
was asking for attention (H)asking for something (P)or
resisting/refusing (V)outnumbered "is notintentional” answers (p<.01),
and "I don’t know” answers in both the auditory and auditory-visual sections (in
both sections p <.01).

3.2. The interpretation of the vocalizationsof an infant age I—4 months

The number of "is intentional”answers in interpreting the vocalizations of an infant

age I—4 months was more than "is not intentional” answers (p < .001) and "I don’t

know” answers (p < .001) in the auditory and auditory-visual sections. In both the

auditory and auditory-visual sections 42% of the vocalization samples were inter-

preted either as asking for attention (H),asking/demand-
ing something (P)or resisting/refusing (V). These answers
together outnumbered both "is not intentional” answers and "I don’'t know”

answers (in both sections p < .001). In both the auditory and auditory-visual sec-

tions 38% of the vocalization samples were interpreted as conversing (K),
calling forsome one (Uor greeting (T). These answers together
outnumber questioning (Y)or naming (N) answers and some-

thing else (M)answers (in both sections p < .001).

Figure 2. The answers (”is not intentional” (= EI INT.), ”I don’t know” (= EOS) and ”is inten-

tional” (= ON INT.)) of the subjects (n = 33) in the vocalization samples (n = 40)
in the auditory-visual section.
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3.3. The interpretation of the vocalizations of an infant age 4—B months

Ninety-two percent of the vocalizations (n = 23) of an infantbetween the ages of 4

and 8 months were interpreted as intentional in the auditory and auditory-visual sec-

tions. In both sections the vocalizations were considered asking for atten-

tion (H)asking/demanding something (P)or resisting/
refusing (V) rather than guestioning (Y) or naming (N) (p <

.001). The vocalizationswerealsoconsidered questioning (Y)or naming
(N) rather than something else (M) in the auditory (p < .001) and audi-

tory-visual (p < .05) sections.

_ln this test there was only one vocalization sample (number 11), which every

subject interpreted in the same way. In the auditory-visualsection all listeners con-

sideredthissampleas asking/demanding something.

3.4. Factors correlating with the interpretation of vocalizations

The age and sex of the subject as well as their experience of the children correlated

with their interpretation of vocalizations. The younger the subject (n = 33) was, the

less she/he interpreted the vocalization samples as intentional in the auditory sec-

tion (p < .05). The less experience the subject had of children, the more frequent the
”I don’t know” answers in the auditory-visual section (p < .01).

The age of the child, duration, intonation contour and content of the vocaliza-
tion sample correlated with the interpretations of the vocalization samples (n = 40)
in the auditory section. The younger the child. the more "is not intentional” answers

(p <.001) and "I don’t know” answers occured (p < .05). While the older the child,

the more "is intentional” answers occured (p < .001). The vocalization sample dura-

tion correlation figures indicate that the longer the sample was. the more n a m-

ing (N)answers therewere (p <.05). The intonation contour correlation figures
show that the more complex the sample was, the more it was interpreted as inten-

tional (p <.001). The vocalization sample content correlation figures indicate that the

more the sample contained only the child’s vocalization, the more it was interpreted
as calling forsomeone (U(p<.Ol)or greeting (T) (p<.os).

The age of the child. vocalization sample duration and intonation contour (n =

40) correlated with the interpretations in the auditory-visual section. The younger
the child, the more "is not intentional” answers (p <.001) and "I don’'t know" answers

(p < .05) there were. Consequently. the older the child was, the more "is intentional”

answers (p < .01) were received. While the younger the child was, the more r e f u-

sing/resisting4
the more questioning (Y)or naming (N) answers were regis-

tered (p < .05). The correlation between vocalization sample duration and the inter-

pretations indicates that the longer the sample was, the more questioning
(Y)or naming (N) answers there were (p < .05). The intonation contour cor-

relation figures show that the more complex the vocalization sample was, the more

"is intentional” answers cropped up (p < .01).

4. Discussion

The results of this study indicate that experience with children correlates with the

interpretation of the vocalizations of an infant. This result is strengthened by
the results of the cry studies of O. Wasz-Höckert, J. Lind. V. Vuorenkoski, T. Par-

tanen and E. Valanne (1968 : 29). Theirresults have indicated that experience of chil-
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dren probably makes the interaction between children and adults easier. In further

investigations it might be worthwhile to demonstrate this by choosing subjects
who have gained extensive experience of children, for instance by working with
them and a reference group of subjects who have no experience of children.

As for the results of this study, it seems that even during the pre-lexical period,
the intentions of the child are reflected in her/his vocal communication. Phonetic

investigation whether there are prosodic features like intonation, intensity, and so

on, which serve to interpret the intentionality of the child’s vocalizations in the pre-
lexical period, or whether the interpretation is dependent on several simultaneous
features.
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