
234

KARL PAJUSALU (Tartu)

VOWEL REDUCTION IN SOUTH ESTONIAN

Introduction

The article discusses reductive changes in the vowels of unstressed syllables in

South Estonian dialects. It focuses on the comparative analysis of the vowel system
ofthe Karksi and Vastseliina subdialects. The former is the central dialect ofMulgi
and belongs to the western group of South Estonian dialects; the latter belongs to

the Vöru dialect, which is an eastern South Estonian dialect. Karksi has historically
witnessed a number of reductive changes in non-initial syllables, e.g. from the third

syllable the low vowels ä and a were reduced to the mid vowels 9 and e, and o in

non-initialsyllables changed mostly into u. Such reduction of vowels in unstressed syl-
lables resembles to some extent the vowel changes that are known in Germanic

languages. In the case of the Vastseliina subdialect, as well as some other typical
Voru subdialects, it has been thought that the vowel quality is determined by the

wide vowel harmony, including velar vowel harmony. There are no other impor-
tant quality changes in non-initial syllables (see e.g. Keem 1997 : 6—7). Thus the

vowel system of Voru non-initial syllables is rather authentically Finnic. Below I am

going to show that the entire South Estonian dialect area forms a whole that reveals
similar tendency in unstressed syllables. As a generalization, this tendency could be

regarded as a transformation of the Finnic vowel harmony system into a new vo-

calism with extensively reduced vowels.

The paper has been prepared within the framework of two projects that are

being funded by the Estonian Science Foundation ("The phonetic, phonological and

morphological analysis of the vowels in the Voru dialect” (ESF Grant No. 3027) апа

"The analysis of the South Estonian vowel system” (ESF Grant No. 3262)). In the

case of Mulgi the work is based on the phonetic measurements and the analysis
that I carried out at the Phonetics Laboratory of the University of Turku in 1995

and 1996 (see Pajusalu 1996 : 78—87). My study of the non-initial vowels in Mulgi
grew out from the treatment of variation in the morphonology of Karksi verbs as

the vowel system ofnon-initial syllables has a large impact on the morphonology
of the dialect. The phonetic measurements ofVoru vowels were made by Merike
Parve and Pire Teras in 1997 and 1998 within the framework of the above-men-

tioned ESF projects (see Parve 1998; Teras 1998). The present article is a more detailed

analysis ofvowel reduction in Vastseliina on the basis of the measurements made

by P. Teras in 1997 (the measurements by P. Teras were partly reported also by Rist

1997). The most important purpose of the project "The analysis of the South Eston-
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ian vowel system” is to study the historical changes in the South Estonian dialects by
relating the dynamics ofthe phonetic and phonological vowel features to the mod-

ification of the morphonological functions. Below I am going to concentrate only
on the firstlevel, i.e. the phonetic characterization.

In order to detect vowel reduction in the non-initial syllables ofKarksi I mea-

sured the duration ofthe short monophthongs and the frequencies ofFl, F2, and F3
in the spontaneous dialect speech of a woman who came from the southern part of

Karksi (b. 1924, recorded in Karksi-Nuia in 1984) and a man from the central part
ofKarksi (b. 1929, recorded in Karksi-Nuia in 1984). The analysis was carried out at

the Phonetics Laboratory of the University of Turku on a Kay Elemetrics Corp.
Model 5500 sonagraph. The speech samples were digitized at 8 kHz.

The data fromVastseliina are taken from the measurement by P. Teras of the

spontaneous dialect speech of a woman from the central part of Vastseliina Parish

(b. 1925, recorded by E. Org and K. Pajusalu at Tabina in 1994). Measurements

were made of the duration of monophthongs and the frequencies ofFl, F2, and F3.

In this case the data were processed at the University ofTartu, using the Kay CSL

4300. The speech samples were digitized at 8 kHz.

The basic structure of the vowel system of non-initial syllables in Karksi and

Vastseliina

Both in Karksi and Vastseliina the occurrence of vowels is determined by the posi-
tion withrelation to the syllable that carries the main stress. The mainstressed syl-
lable is, as a rule, the first syllable of the word. It reveals all the short and long
monophthongs and diphthongs. It is characteristic of both Karksi and Vastseliina
that not only the vowel systems of the first and the non-initial syllables differ
from eachother, but the vowels systemsof the various non-initial syllables are also

different. The basic principle is the same — the farther from the syllable that carries

the main stress, the more limited is the occurrence of different vowels. In Karksi,

however, this tendency is manifested more strongly than in Vastseliina. In a sim-

plified form the basic structureof short monophthongs in Karksi and Vastseliina is

as follows:

The above schemes show that the vowel system ofVastseliina has a somewhat

larger number of vowels in all syllables than Karksi. The difference is especially
remarkable starting with the third syllable. Vastseliina has the high central vowel

7 in the first syllable (its quality resembles the Russian p/), which is widespread in

Karksi (according to Pajusalu 1996):

1st syllable 2ndsyllable 3rd syllable A4th syllable

i U u i Ü u i üÜ u i u

e. ö e0 e 2 0 e 2 е д

ä a ä a

Vastseliina (According to Rist 1997):

1st syllable 2nd syllable 3rd (and 4th) syllable

i i U u I 1 U u i ü u

e 0 ¢ 0 c e 0 е е 0

а а ä a ä a
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the Võru and Tartu dialects but does not reach Mulgi. The positions of; and ü are

problematic. Depending on the idiolect, ü and ;i could change their places in the basic

scheme (Rist 1997 : 34).
The most important difference in non-initial syllables is related to velar vowel

harmony. In Vastseliina, where the velar vowel harmony occurs, in words with

back vowels the back ¢ occurs instead of ¢ and occasionally { instead of i (the neu-

tral i occurs more often in words with back vowels as well). As elsewhere in Mul-

gi, velar vowel harmony does not occur in Karksi. and 7 and ¢ occur both in words

with front and back vowels. The other conditions of vowel harmony are similar in

both dialects. d and i occur in words with front vowels. a and u occur in words

with back vowels; o isneutral. The harmony of 0 that occurs in the eastern part of

Vastseliina does not reach the central part of the dialect area (Wiik 1988 : 153)
which is being described here.

One should mention the occurrence of 0 on a very limited scale in the second

syllable in Karksi. In most cases the historical 0 has been replaced by u. 2 corre-

sponds mostly to the historical e in the second syllable, but occasionally also to a

and d in words with a stressed overlong first syllable. |
In Vastseliina, the only difference in the basic structure of the vowel system of

the non-initial syllables is the non-occurrence of { starting with the third syllable. On

the other hand. in Karksi there is a principal difference between the second and the

following syllables — starting with the third syllable there are no low vowels. a and
d have reduced to 2 or e. From the third syllable on, there is no o either. In Kark-

si, the third and the fourth syllable differ in that the harmony ofü does not include
the fourth syllableany more; even in the words with front vowels one can find a

generalized u. In Vastseliina, however, the vowels show a similarity in the third

and fourth syllables. Nevertheless, in both dialects the vowels with a similar basic

quality differ in different syllables as to the degree of reduction.

The relation between duration and thereduction of vowels in non-initial syllables

Proceeding from the premise that the reduction ofvowels is related to theirrelative

duration in an important way (cf. e.g. Lindblom 1963;Raimo 1968), I have classified

the vowels in non-initial syllables (with the exception ofKarksi o and Vastseliina 7
which are extremely rare; in Karksi a isconsidered a variant of e) into sublong (dura-
tion is more than 1.2 of the duration of the vowel of the initial syllable), short
(0.8—1.2 of the vowel duration in the initial syllable), and subshort (less than 0.8 of
the vowel duration in the first syllable). The mean frequencies of the vowel for-

mants thathave a differentduration in non-initial syllables are presented in Table 1.

Table 1 indicates that in the speech of all informants there is a relation between

the duration ofvowels and the degree of reduction. In Karksi this relation is more

general and more extensive; in Vastseliina it depends more clearly on the specific
nature of the vowel. The relation between the vowel duration and reduction is espe-
cially clear in the speech of the male informant of Karksi. The degree ofhis vowel
reduction and that of the other informants on the basis of the mean frequencies of

F 1 and F 2 is illustrated by Charts I—3.

All the subshort vowels are somewhat reduced in the speech ofboth Karksi

informants, especially when compared to the values of sublong vowels. Certain

differences can be found in the way these vowels are reduced. As expected, F 1 of
high vowels increases together with a decrease in duration. The mid e in Karksi

behaves similarly to the low vowels, i.e. its F 1 decreases together with a decrease
in duration. The linkbetween the decrease ofF 1 of the secondary d and the decrease
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in duration is stronger than in the case of a. The same happens to F 2 in the pro-
nunciation space of all the vowels — F 2 of front vowels decrease as the duration

shortensand F 2 of the back vowels increases. This change, however, is minimal for

d and e in Karksi, where the quality difference ismostly linked to raising.

Most of the above-mentioned general tendencies are valid in the speech of the

Vastseliina informant although the degree of reduction in subshort vowels is usu-

ally not that great. Thus, for example, the high vowels are less reduced than in

Karksi. An unexpected result is that the half-long high vowels and the half-long
mid ¢ and the back ¢ are a little lower than the corresponding short vowels. In the

non-initial syllables the high vowels of Vastseliina appear tobe generallyreduced

in some degree.
As the strongest case of reduction, one should point out the assimilation of the

subshorto'with u. This change has already been completed by now in Karksi. Another

noteworthy difference concerns the back e. Where one would assume the histor-
ical change ¢ > 5, е in Karksi, there the same change is underway in Vastseliina. The

subshort back ¢ is a little fronted and lower than its longer equivalents; the sub-

short ¢'is somewhat more back and higher than the longer e vowels.

Karksi Vastseliina

male female

F1 F2 F3 N F1 F2 F3 N F1 F2 F3 N

ä 580 1160 2315 9 650 1470 2680 5 660 1215 2245 11

a 540 1260 2375 5 565 1550 2590 4 640 1250 2305 21

(f 515 1400 2425 4 580 1600 2860 3 600 1235 2405 15

ä 605 1450 2360 ® 635 1640 2665 3 645 1560 2405 13

cZ 545 1515 2295 4 615 1655 2735 3 615 1510 2410 10

ä 465 1485 2405 3 570 1620 2560 2 525 1500 2290 5

ё 500 1585 2395 7 565 2020 3030 9 465 1890 2585 5

e 435 1515 2360 15 495 2045 3080 17 510 1805 2655 24

ё 385 1495 2305 11 450 1960 3010 11 460 1750 2540 17

g? —
— —

— —
— 475 1330 2315 8

€ — — — — — — 460 1345 2240 19

é’ — — — — — — 490 1440 2305 14

0 — — — — — — 505 920 2270 5

0 — — — — — — 440 925 2170 5

0 — — — — — — 405 810 2140 3

u 340 935 2215 4 370 935 2380 4 405 910 2315 4

u 355 1025 2105 6 375 905 2420 6 380 840 2320 11

Ü 380 1140 1880 6 405 1005 2440 5 395 955 2370 8

ü 330 1750 2365 6 335 1850 2810 3 385 1805 2350 2

ü 345 1645 2290 3 340 1725 2795 3 355 1800 2355 3

ü 360 1680 2280 1 360 1610 2680 4 365 1775 2415 2

7 310 2255 3200 6 310 2505 3325 6 390 2265 2885 7

1 320 1880 2705 6 325 2275 3145 3 360 2155 2630 22

7 345 1585 2190 7 350 2100 3010 6 360 2120 2665 23

Table 1

Formant positions of vowels with varying duration in non-initial syllables
in Karksi and Vastseliina
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The dependence of the quality of a word-final back ¢ on the pronunciation of
the preceding vowel is marked by the dotted quadrangle in Chart 3. Its Lighest
peak marks the quality of ¢ in the case of a preceding i, £ or } (the mean F 1 being
410, F 2 1395), the lowest peak the quality of ¢ in words with a preceding a (F 1 480,
F 2 1360), theright peak the quality of ¢т the case of a preceding u or o (F 1 460, F2

Chart 1. The articulation space of the male informant of Karksi.

Chart 2. The articulation space of the female informant of Karksi.
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1265), the left peak the quality of ¢ in words with a preceding ¢ or ¢ (F 1 475, F 2
1425). Thus thereduction and assimilation of the back ¢ are related to the preced-
ing vowel, whereas F 1 and F 2 of the subshort ¢ are mostsimilar to the formants of

e in words with a preceding ¢ or ¢.
Among the low vowels thereduction of d is especially strong. Actually, the sub-

short @ should be regarded as a reduced mid central vowel 2; it is very close to the
subshort ¢. The subshort dissomewhat lessreduced, though the reduction is notice-

able.

Summary

The above-mentioned results enable us to assume that if the pronunciation of

Vastseliina keeps on changing in the same direction, then a number of reductive

vowel changes will occur there, which havealready taken place in Karksi. 0 in non-

initial syllables willbecome u, the back ¢ will become the reduced central vowel 5,

and even the low vowels will be reduced until their basic quality gets changed.
However, it is doubtful whether this chain ofchanges will continue in the assumed

direction because a fast levelling with Common Estonian is underway.
The reasons why the pronunciation changes could be explained by a strong influ-

ence of Indo-European languages. It is evident that this influence is most strongly
manifested in the strengthening of centralized stress in the syllable that carries the

principal stress and in the weakening of secondary stress and other factors that

regulate word rhythm. The accompanying vowel reduction in unstressed syllables,
especially the raising of low and mid vowels, has been described in a number of
Germanic languages. in Russian dialects, etc (see Vlasto 1986 : 308). InSouth Estonian,

this change has occurred more extensively in the western dialects, where it resem-

bles similar changes in the vowel system of the western and insular dialects of

Chart 3. The articulation space of the Vastseliina informant.
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North Estonian. Thus, it may indicate a Germanic influence from the west. As the

results of this paper indicate, such reductive changes are also reaching a conserv-

ative dialect in the eastern part of South Estonian.
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