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ARVO EEK, EINAR MEISTER (Tallinn)

QUALITY OF STANDARD ESTONIAN VOWELS

IN STRESSED AND UNSTRESSED SYLLABLES

OF THE FEET IN THREE DISTINCTIVE QUANTITY DEGREES*

Introduction

In recent works we have reached a conclusion that, in Estonian phonology,
it would be reasonable to define segmental phonemes as phonologically rele-

vant representatives of the corresponding sound types. We proposed that there

are no long (and also overlong) segmental phonemes in Estonian. All vowel

and consonant phonemes can occur in a short and a long duration degree.
A long degree isrepresented by sequences of two identical segmental phonemes
(V, VV and C, CC). The three-way contrast is projected to foot level. Eston-

ian has three phonological foot patterns called quantity degrees (Eek, Meister

1997; 1998).
There is a strong argument in favourofthis analysis: long monophthongs behave

like diphthongs, and geminates as consonant clusters in word prosody. This treat-

ment is supported by a widespread opinion that quality differences between vowels

of different length are not so big that short and long vowels should be considered

as different phonemes (cf. e.g. English where short and long vowels are qualita-
tively different enough tobeconsidered as different phonemes: cf. Wiik 1965 : 57—

60). However, G. Liiv’s (1962) data show a regular change in the stressed-syllable
vowel quality accompanying with an increase of the foot quantity degree, e.g. /i/.

/a/, /u/ and /a/ gradually move to a more peripheral position in the acoustic space
of vowels: /e/ moves higher and forwards: /ii/, /6/ and /8/ tend to move to higher
and backward positions, and /0/ shifts backwards. Unfortunately G. Liiv’s data do
not allow to estimate the magnitude of these quantity dependent shifts in vowel

quality and to test their perceptual relevance.
We presume that in this respect the situation is similar to Finnish where short

vowels of the stressed syllable overlap to a great extent with corresponding long
vowels in the acoustic space of F 1 vs. F 2 (see Wiik 1965 : Table 1), and as the psy-
choacoustic differences between short vs. long vowels are below 1 Bark. they
should belong to one and the same category of vowel quality (livonen 1987: Fig-
ure 19).

The second question we address is: which type — Finnic or Germanic — char-
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acterises quality reduction of StandardEstonian vowels in the unstressed second

syllable of Ql, Q 2 and Q 3 feet? Kalevi Wiik (1965 : 131—134) has mentioned that

the formant positions of Finnish unstressed vowels are roughly similar to those

of stressed ones, whereas the shortest unstressed vowels, following a heavy
syllable, tend to centralise slightly more than the half-long unstressed vowels

following a light syllable (cf. also livonen 1988 : Figure 5). Moreover, J. Local and

R. Ogden (1998 : 21) have added that values ofF 1 and F 2 for the Finnish short

and half-long unstressed /a/ are almost identical irrespective of the nature of
the first syllable. We suppose that the described Finnic-type of vowel quality
reduction is also valid at least for the Estonian half-long unstressed vowels in

Q 1 feet but this weak reduction type is most likely not applicable to the extra

short unstressed vowels in Q 3 feet. Presumably Q 3 feet are best characterised

by the Germanic-type of reduction (cf. e.g. a strong centralised quality reduction
in English, Wiik 1965 : 133), being rather dependent on the length and tenseness

of the first peaked syllable, controlled probably by two relatively autonomous

mechanisms, than directly related to the concrete duration of an unstressed-syl-
lable vowel.

Methods and speakers

Wehave measured 227 CV(V)CV words where intervocalic C’s are non-palatalised/
palatalised alveolar consonants (with some exceptions). These words are taken

from the text corpus of the Estonian Phonetic Database (18 filler sentences from

Block S1: vowels in the feet of differnt quantity degrees. and 6 sentences from Pas-

sages). Speech recording was directed to disk with a sampling rate of 20 kHz, and

was controlled by the EUROPEC software. Recordings were made in a sound-

treated chamber using the Sony ECM44 microphone. Durations and frequencies of

Fl—F4 of vowels are measured on wideband spectrograms using Kay Elemetrics

CSL 4300 system(formant frequencies are measured at the quasi-stationary phase
defined visually on a wideband spectrogram). Measurements are based on the

material of 3 male speakers whose speech represents correct Estonian pronuncia-
tion (AE — b. 1937. from Western dialect area; AA — b. 1955, from Western dialect

area; MK — b. 1975, from Tallinn).

Results and discussion

Data about stressed-syllable vowels are presented in Table 1 and Figure 1.

The stressed-syllable high/low vowels in a Q 1 and Q 3 foot, as the shortest/

longest vowels, have also qualitatively occupied the marginal positions in the pro-
duction space of F 1 vs. F2: in a Q 3 foot (if compared with Q1) /i/ and /ü/ have

moved higher and forwards; /u/ has moved higher and backwards: /a/ has become

lowerand /a/ has moved lower and backwards. The stressed vowel in Q 3 feet is

the most peripheral and the stressed vowel in Q 1 feet is most centralised (Figure 1).

The stressed vowels /i ü u ä a/ in Q 2 feet are located in the proximity to the cor-

responding stressed vowels in Q 3 feet.
Quantity induced qualitative differences of the stressed mid vowels are as fol-

lows: the long stressed /e/ is higher and more anterior than that of the short

/e/; the long stressed /o/ is higher and more back-positioned than the short /0/;

the long stressed /õ/ is more back than the short one; the stressed /ö/ in a O 3 foot
is the lowest and backmost. Al] these guality differences of the stressed vowels are

relatively small and do not exceed 1 Bark. The only noteworthy exception: the
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short stressed /6/ has moved considerably forwards. Shifting a short /5/ into the

/6/ space is obviously due to the unbalanced phonemic context of the measured
words because in the majority of them /6/ was followed by a palatalised alveolar

consonant which shifts the vowel forward.

In the two-formant production space the unrounded /i/ has occupied a part of

the perception space of the rounded /ü/and the unrounded /e/ is located in the

perception space of the rounded /ö/. When F 3 and F 4 are removed from the

spectrum, /i/ is perceived as /ü/ (Eek, Meister 1994 : 64; cf. Schwartz, Beautemps,
Abry, Escudier 1993) and /e/ as /6/. Figure 1 shows that /i/ — /ü/ and /e/ — /6/
differ essentially on the basis of F3. The distinction of /i/ — /ü/ as well as /e/ — /ö/
increases namely owing to the fact that F 3 is located near the relatively strong F 2 of
rounded frontvowels which amplifies the cumulative effect of F 2 and F3, whereas
in the case of unrounded frontvowels the proximity of the strong F 4 to the domi-
nant F 3 can direct the listener’s attention to the upper part of the spectrum. There-
fore, the perceptual parameter F2' seems to describe well the perceptual phenomena
governing this contrast.

Q3 foot

DIHTRIRINIALRIAINETIALIRTEIN
x| 695[ 251]2079[2696]15| 147]236[2270[2906]6[202[224[2271[3024[6_

vis[ sa| тр27| 180[212]] 13]13]160[264] | 42[10|192]204[ |
min_]_ 3[203[1863[2318|__|[ 122[227] 1979[2436[__| 154[203[2005[2690[|

Гтах|-118|_329|2385 3020|_|[162]253 2411 3248]_|255[228[2436[3197[|
ГХ |52| 493[1720]2402]11|147]454]1627]2454]&|223[435[2009[2546[6_

tei[—sa | 17] _79[220]177[ | 20|76|252[ 182[ | 40| 44[209[ 177] —min|60|363]1400]2233]||117]318|1421[2157]_| 185[380[1675[2284[_
“max|117]609]2131|2701] | 173]532]2106]2614]|274]507|2208[2751]_
—x |94| 655]1551|2446] &||182]683] 1560]2445]§|251]676]1548]2453]6

ra/[sd | 22| 65[ 160[190[ | 25|60| 168[201l|72 75| 182[154] |
[тип| 70|583]1345]1954]—| 48]590]7345]2030]|182 558[1315[2284]
[тах|-137|_786|1776|2588| ||223]761]1751]2639] |365]761[1725[2664]—
—x|es|288]1624[2220]12|| 167]253| 1704]2136]6|213]240[1703[2128]6

/ü/[ sa[ 27[ s89[ 132[147[_| 25[ 16]167[194[| 32| 25 121]192[ |
|тип| 46]_228|1370[1909]__|| 144]228 1395]1852| _| 167[203[1590[1878[_
[max|138] 58]1603]2436] —| 208]279]1903]2300] |254]272[1678[2308 |
X | 97|a77] 1552|2527] | —200[291[1525[2283]8]

/6/[ 5а[27| 78| 159 205/| 30|66| 100[ 133|| 39| 54[110[ 169[ |‚° [а [_ 76] 380]T345|1054]—| 85| 355| 1421|1972| | 146[431[1370[2030[__
__ [max[ 122[583[1827[2512]_|[176[558|1751|2411]_| 266[558[1649[2487|—

—x[ 82|267]65| 2447|11|148]253[605] | 7]193]244] 596]_[67
ш-ъа-[23| 29 44 | | 6] o[ 55 | |

“min| o3|228[558[2208]|118]228]532]— | |166[228]558[ | |
[max|T14]304]761[2569|||187]304 681] | | 265]273 68s| | |
—x | 62| 186[884[2335|17|[ 167]402] 807]2531]6|229]444|831[2525]&

Joi[sd | 28] 32| 77|1es|| 38| 52 37| se|| ea|s3] 50]73] |
" [Tmin| 50|454] 7ве| 1903 | 34|320 761] 2461] | 153] 380]7e1[2411]|

|_max_| 130[_558|1040[2538|_ | 236]456] 862|2588| | 329]558]913|2614]|
— |x| 83| 424]13952452]8| 147[411]7120[2558|6| 182[455[1184[2436[3
161[ sd[_ 19[ 71l 210]22|| 21|в1[ 38[ 162[ ] 2[ 1|29l217[ |

= [min] 56[304[1142[1979[_|[125[279]1065[2363|_ [ 180[454[1167[2233[|
_ [тах[ 110|507|1648|2690|177]507[1167[2791]_| 184|456[1218|2664[_

—x|99 -654 T142]2478]14|157]631] 1066|2467] &|245]671] 1071|2460] & |m-za- 35|s8] 53]106]|65| 53] 63 84[ |
min| 61|499]T040]2300]—| 19|558] 1015]2385 | 188[609|989[2360[_~max|139]736 1363125631— |219 710 1142 26391—1341 727 114212538 ]

Table 1

Average durations (ms) and formant frequencies (Hz) of the stressed-syllable
vowels of Ql, Q 2 and Q 3 feet (3 male speakers)
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In order to estimate the quality differences ofstressed vowels in the perception
space we calculated the ”effective” second formant (F2’) values on the basis of the

first four formants. For the calculation of the F2' we used the formula fromBladon,
Fant 1978 : 3. The positions of stressed-syllablevowels in the perception space are

presented in Figure 2.

In perception experiments with two phonetically trained listeners, all the mea-

sured words, separated from the sentence context, were identified according to the

read text. Stressed-syllable long vowels, separated from Q 2 and Q 3 words, were

identified as the corresponding intended vowel types. The same is also valid for the

stressed-syllable vowels separated from Q 1 feet. Exceptions: short isolated /6/

was perceived 37% of the cases as /6/ (before palatalised alveolars): short /ii/ 16%

as /6/ (in the word iihe) and short /e/ 18% as /6/. On the basis of average values.
short and long stressed-syllable vowels are situated in the perception space of the

corresponding phonemes, whereas the phonemes are best characterised by a long
vowel in the Q 3 foot and worstby a short vowel in the Q 1 foot. However, these dif-

ferences do not exceed 1 Bark. Long and short vowels differ little in quality. There-

fore, defining them as different phonemes based only on quality is not justified.

Figure 1. Average spectral values of the Estonian stressed-syllable vowels of Q 1 (©), Q 2 (D)
and Q 3 (A) feet plotted onto the acoustic space of Fl, F 2 and F3. On the lowerpart
of the Figure phoneme boundaries are designated by straight lines defined on the
basis of matching experiments (Eek, Meister 1994 : Fig. 6); phoneme targets as ref-

erence points in the two-formant perception space are marked by a dot (®).
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Data about the unstressed-syllablevowels are presented in Table 2 and on Fig-
ures 3 and 4.

In an unstressed syllable, contrary to the stressed one, the ”half-long” vowels of

Q 1 feet are the least reduced and the ”extra short” vowels of Q 3 feet the most cen-

tralised leaving the unstressed vowels of Q 2 feet in an intermediate position (cf.
Figures 3 and 4). Especially the unstressed back vowels of a Q 3 foot are extremely
centralised.

Figure 2. F 1 and calculated F2’ average values of Estonian vowels in the stressed syllables of

Q 1 (), Q 2 (O) and Q 3 (A) feet plotted onto the perception space (3 male speakers).
Phoneme boundaries are designatedby straight lines defined on the basis of match-

ing experiments (Eek, Meister 1994); phoneme targets as reference points are

marked by a dot (*).

[Qffot T O2foot — | — 03 foot |
|б]АГР2[Е[М ОТРАГ 2[Р3 ТМрАР2 )83[ м

Гх[121[252]2145|2730]40 |_84]263]2075]2675|37|67 289|1961|2530|35

m-@-immmm-|20| 54 190]223] |

|min| 55|203|1776[2309]|| 55[203[1751]2284] | 38]203]1649]1878]|mmm-‘mmm-|126]431]2309]2893] ——
|x_[115]565]1653[2460]21] 81]526]1569]2386]7| 83]549]1567[2369]12m-m-|12]84] 178]148[|22] 91] 135 181] ||min ]63]380]1269[2208]_| 64 409]1370]2106 | |
|max|199]710]1928[2614]||92]634 1776 2563] | 134]710]1725|2563]
|х|'06]340]822[2415]11]{76|416] 982]2309] 8 |m!m-|31] 40]197]424] | 23] 84]163]22|
[min|70|227]532{2258]||51]355]e85]1852]|43]272 609]2411]|
|max|169|499[11422588[ 146] 482| 11812650] [ 138]558]1272]2461]|
[ %[70[482]901[2373]2[ 90]520]1095]2416]6|77]634]1142[2512]1|

Joi[sd | 6] of 18]30s| | s8]74| 109[227[ T o ofo 0 —

|min| 66|482888[2157]|40]456] 930]2157]|77|634]1142]2512]|
[max|74|482 913[2588]|108]636]1192]2614 | 77]634]1142|2512|
[—x [116[668]1176[2450]10]|93]652[1231]2487] 8| 85]579]1359]2440] 12ш-[14]64] 86]95] | 26] 95|_93|156|__
|_min_| 72|482[1065[2233][73]499]1167[2309]| 56|431]1218]2030]|
[тах|163[761]1345[2614]|/115]761]1421]2588] _| 150]710]1548]2588]|

Table 2

Average durations (ms) and formant frequencies (Hz)

of the unstressed-syllable vowels of Ql, Q 2 and Q 3 feet (3 male speakers)
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Figure 3. Average sgectral values of the Estonian unstressed-syllable vowels of (š (?h)’PZ (El?an ?3 (A) feet plotted onto the acoustic space of Fl, F 2 and F3. On the

owerä)art of the Figure fhoneme boundaries are designated bšstraight lines
defined on the basis of ma chinš experiments (Eek, Meister 1994);E oneme ta:qetsas reference points in the two-formantperception space are marked by a dot (9).

Figure 4. F 1 and calculated F2' average values of Estonian vowels in the unstressed syl-
lables of Q 1 (¢), Q 2 (O) and Q 3 (A) feet plotted onto the perception space (3 male

speakers).Phoneme boundaries are designated by straight lines defined on the

basis of matching experiments (Eek, Meister 1994); phoneme targets are marked

by a dot (®).
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As we mentioned above, the words separated from sentences were identified

according to the read text. From among unstressed-syllable isolated vowels only
/i/, /o/ and /a/ т Q 1 feet were identified 100% correctly, while /u/ was per-
ceived 82% as /u/ (9% as /o/ and 9% as /8/). The unstressed-syllable /e/ of a Q 1
foot is changing into /a/. It has already happened audibly in spontaneous speech of

the younger generation. /e/ in the word context pronounced by older generation
is still perceived as /e/ but /e/’s. separated from the same words, are perceived as

/e/ only 33% of the cases (57% as /a/). Thus the change ¢ > d is latently existing also

in an audibly correct speech of the older generation. The unstressed-syllable /e/ of

a Q 1 foot is perceived 10% as /6/: these stimuli are pronounced by an actively Eng-
lish using speaker MK (an influenceof the strong centralisation of English?).

In a Q 2 foot, the unstressed /i/ was perceived 100% correctly; /a/ — 88%

(12% ав /а/); /е/ — 28% (72% ав /а/); /о/ — 17% (50% as /5/ and 33% as /a/); /u/
— 13% (62% ав /б/ апа 25% ас /о/).

/e/, /u/, /o/ and /a/. separated from the unstressed syllable of a Q 3 foot.
were not at all perceived as the corresponding vowels of the read text; only /i/ was

considered /i/ 51% of the cases (49% as /e/). /i/ is the most resistant to centrali-
sation. The unstressed /e/ of a Q 3 foot was perceived 75% as /6/ and 25% as /a/:
/u/ — 88% as /õ/ and 12% as /0/; /o/ — 100% as /a/: /a/ — 58% as /ä/ and 42%

as /ö/. While /e/ was in most cases perceived as /ä/ ina O 1 and O 2 foot, the /ö/

judgementsprevailed in a O 3 foot, which also indicates greater centralisationof 03.
The present preliminary data do not enable us to state that the greatest reduction

of unstressed vowels of a Q 3 foot is caused only by vowel shortness because small

differences in average durationsof unstressed vowels in Q 3 and Q 2 feet (Table 2) do

not confirm it. The greatest reduction is rather due to the specific pattern of the whole

Q 3 foot (cf. peaked and unpeaked stressed syllables in Q 3 and Q 2 feet).
We are obviously not at variance with the presented data if we speak about the

so-calledFinnic-type ofreduction in the case of unstressed vowels in the Q 1 foot
and about the so-called Germanic-typeofreduction in the Q 3 foot (especially among
back vowels).
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