
186

TUIJA NIEMI-LAITINEN, PÄIVIKKI ESKELINEN-RÖNKÄ (Helsinki),
RISTO MONTO (Vantaa)

SPEAKER DATABASE TEST

AND FUNDAMENTAL FREQUENCY IN SPEECH

This is a study of a speaker database program and fundamental frequency in speech
in Finnish. To determinethe capability of the databaseprogramused, a set of testruns

was initiated as a co-operation project of the Department ofPhonetics (University of

Helsinki) and the National Bureau of Investigation (NBI). When collecting the voice

samples ofover one hundred speakers, an attempt was made to simulate an authentic

recording session as accurately as possible. both from a technical standpoint and in

terms of sample taking. NBI standards were applied to the whole testing procedure.
The results of a closed test set indicate the adequacy of the programwhen original

and reference samples came from the same channel. In atest with no search restriction

criteria in force, the program managed to identify a same-channelspeaker in 90% of

the cases. When the search was restricted on the basis of gender the rate of identifica-

tion was 92% for male speakers and 94% forfemale speakers. When the channel ofref-

erence samples were changed into a simulated telephone channel a dramatic drop in

the identification rate was observed: In a test with no search restriction in force the pro-

gram was successful only in 32% ofthe cases and withrestricted gender-based search

the identification rate for male speakers was38% and for female speakers 36%.

1. Fundamental frequency in speech

1.1. FO analysis ;

The fundamental frequency analysis has been quite successfully used in forensic

phonetics (see for exampie Laßiviere 1975; Braun 1992; 1995; Gfroerer, Wagner
1995;Ladd, Terken 1995; Niemi 1995; Jessen 1997). The fundamental frequency in

speech is dependent on the anatomy of the speaker, but it is quite easy to disguise,
too. Voiced sounds and sections of speech are needed for FO analysis. The Finnish

language has many vowels and diphthongs, which form the bases of this analysis.
Fundamental frequency in speech is resistant to channel distortions and it is mea-

surable even from telephone transmitted speech. The fundamental frequency in

speech is sensitive to the following distortions: the age of the speaker, alcohol,

drugs, the emotionalstate of the speaker, speaking style and situation, duration of

the speech sample, tape speed as well as noise in the area of FO.

Some problems may arise during the F 0 analysis. First, the analysisrange needs

https://doi.org/10.3176/lu.1998.3.05

https://doi.org/10.3176/lu.1998.3.05


Speaker Database Test and Fundamental Frequency in Speech

187

tobe set. This means that the lowest and highest frequency of a certain speaker
have tobe anticipated. Something very typical for the speaker may be missed if

too narrow a range is used. The other problem arises with differentalgorithms. For

example, Medav Spektro 3000 has two different algorithms for FO analysis: cep-
strum and SIFT (Simplified Inverse Filter Tracking). From these two, cepstrum uses

spectrogram and fundamental frequency harmonics to calculate the FO. It is then
useful when telephone speech needs tobe analyzed. SIFT uses inverse filtering to

measure the FO. These two methods are explained below.

1.2. Cepstrum

The spectra of the color spectrograms are the starting point for this algorithm. The

dynamic limitneeds to be carefully set for successful analysis. The individual spectra
are limited to 2 kHz and subjected to an FFT again yielding the cepstrum showing
the harmonic components of the spectrum i.e. the fundamentalvoice frequency
(pitch) with its harmonics. Even when the fundamental is not alone in the signal
(e.g. telephone transmission) it can be seen by the harmonic spacing. The cep-
strum’s maximum is finally converted to the pitch value. For small signal sec-

tions, (color spectrum overlapping > 50%) a pitch value iscalculated for each indi-

vidual spectrum of the color spectrogram and displayed in a polyline diagram. Out-

liers are then removed by third-ordermedian filtering (each value has its prede-
cessor and follower added to itself, the largest and smallest values are removed
from the three and the original value isreplaced by the remaining one). The curve

is finally smoothed out byreplacing each value by the medium value of its adjacent
values (n corresponds to 40 msec). The polyline consists of pitch minimums and

maximums of 50% overlapping time sections for large sections.

1.3. SIFT algorithm

The SIFT (Simplified Inverse Filter Tracking) algorithm in Medav Spektro deter-
mines the fundamental voice frequence via a maximum in the ACF of the LPC

residual signal. The speech signal is split up into segments of 16—100 milliseconds in

length, and each one has its pitch calculated. The signal bandwidth is first limited to

1 kHz, using low pass filtering. This helps to differentiate between the presence or

absence of a voice signal by suppressinghigh frequencycomponents such as hiss

and explosive sounds and thereby removing energy from these sections. Most of

the energy of a voice signal is below 1 kHz. A Durbin Levinson recursion uses the

first five ACF values of each segment to calculate the four coefficients of an inverse

filter used for reversing the speaker’s speech tract modulation. Ideally, inverse fil-

tering the segment results in a residual signal of white noise or a pulse train. This

can be interpreted as the speech tract’s excitation signal.
The pitch results of the individual segments are displayed on a polyline diagram.

Voiceless sections cause the line to be positioned on the lower edge of the dia-

gram. Outliers in the voice sections are then removed by 3rd-ordermedian filtering.

2. Speakers and speech material

The fundamental frequency of 111 Finnish speakers (53 women, 58 men) was ana-

lyzed. Female speakers were 21—50 years old and male speakers 20—40 years old

(see Table 1 below). The same speech material was also used in testing a speaker data-

base programexplained insection 5. For more details in recordings and speakers, see
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also Eskelinen-Rönkä 1997 : 48—57. The speakingmaterial consists ofa reading passage
of about 20—40 seconds,depending on the speakingrate. The passage is as follows:

Lähes kaikki, mitä nykyihmiselläon, on rahalla ostettavissa. Hänen yksityisetkin
asiansa ovat useimmiten samanlaisia kuin monilla muilla. Niihin ei kdtkeydy per-
soonallista salaisuutta, silld ne on hankittu kauppakeskuksista, tavarataloista, super-

marketeista, kirpputoreilta tai kioskeista. Ostoksillakdyminen оп hanelle yksinker-
taisesti jo eldmdn ylldpidon kannalta vdlttadmdtontd, silld vaihdon yhteiskunnassa vain

darimmdisen harva on omavarainen.

3. Analyses

Many parameters may be calculated while analyzing the fundamental frequency in

speech, for example the mean or the average, the standard deviationand the range.
At least 20—30 seconds of speech is needed to calculate the average fundamental

frequency in speech (Nolan 1983 : 121—130,and own research). Very little variation

is found after this point. The standard deviation of fundamental frequency tells
how much variation there is from the average value (+-). The range value can be

expressed either in hertz (Hz) or semitones (ST). Thisrange expresses the lowest and

the highest FO valuethat a certain speaker uses while speaking. If a speaker is said 10

have very lively voice. it means that this speaker has a widerange of FO. Monoto-

nous speakers, on the other hand, have a very narrow range оЁ РО.

In this study we analyzed mean fundamental frequency (F0 and its standard

deviation (STDEV). Both cepstrum and SIFT algorithms were used. With SIFT we

used three different options: 1) a segment length of either 16 milliseconds (with 1%

threshold), 2) 30 milliseconds (with 10% threshold) or 3) 50 milliseconds (with 20%

threshold).

4. Results

The results of FO analyses are shown below in Table 2 (female speakers)and Table 3

(male speakers). In both tables the first column is for the FO average, the second is for
the FO standard deviation. These two columns are first shown for cepstrum results
and then for SIFT results.

MALE FEMALE

Number of speakers 58 53

DIALECTAL VARIATION

Standard Finnish 23 24

Finnish + Swedish 5 6

Dialect speakers 30 23

Smokers/non-smokers 14/44 13/40

АСЕ: years years

Mean 24.3 30.6

Min 20 21

Max 40 50

SPEECHDURATION seconds seconds

Mean 29.2 30.0

Min 233 23.7

Max 36.8 44.8

Table 1

Data on speakers and speech material used in F 0 analysis
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As can be seen, cepstrum value is the minimum and SIFT 50 value the maximum (see text

for explanations).

As can be seen, cepstrum value is the minimum and SIFT 30 value the maximum (see text

for explanations).

The results show that with male speakers, the cepstrum values of mean F 0 are the

greatest of all and SIFT 30 values the smallest (105.9 vs. 101.7 Hz). Results of female

speakers, on the other hand, show that SIFT 50 are the greatest and cepstrum values

are the smallest (187.6 vs 182.3 Hz). For male speakers the 30 ms segment
length with SIFT algorithm should be the mostreliable one (inverse filtering needs

to be set so that frame length 15 at least twice the speakers F0: if FO isabout 100 Hz,
then the frame length should be at least 20 ms). With female speakers
the frame length should be shorter than with male speakers, so it is obvious that

SIFT 16 (16 ms frame length) is the most optimal one for female speakers. This SIFT

value is indeed the nearest one to cepstrum value (183.2 vs 182.3 Hz).
There are, however great differences between the mean values of these algo-

rithms. When, for example, SIFT is not set for the optimal analysis options, it does

not measure all the voiced sections of speech. In forensic cases, it is important to

guarantee that telephone transmitted speech and its FO can both be analysed.
Thus, we recommend the use ofthe cepstrum algorithm, on the understanding that

the signal is amplified so that the program finds every voiced part of the speech.

5. Speaker database research

In 1989, Finland legalized therecording and registering of sound samples of suspects
so that they could be used as distinguishing markers. After this new law went into

effect, NBI began developing a database programfor voiceregisters. Here the objec-
tive was to acquire a database applicationthat wasconducted reliably and efficientlyand

thatwould allow the registration of speech samples, theircomparison, as well as the

comparison of speech samples in and outside theregister. The Crime Laboratory of
NBI received the first prototype version ofan automatic database program in 1995.

The database program that iscurrently in use isbased on the metrification and

vector quantification of the parameter values. The parameters computed from the

speaker’s speech sample toberegistered are vector quantified into code books about

the speaker. These code books are recorded in the databasewith other speaker-specific
data. During comparisons or searches the speech sample of an unknown speaker is

parametrified and quantified without the teaching of code books. which iscompu-
tationally a complicated operation. The code vectors which are established are

compared with the code vectors of the code books included in the database regis-
ter. The comparison of code vectors can either be extendedto cover the whole data-

cepstrum stdev SIFT 16 stdev SIFT 30 stdev SIFT 50 stdev
mean (Hz) (Hz) mean (Hz) (Hz) mean (Hz) (Hz) mean (Hz) (Hz)

182.3 20.1 183.2 225 186.2 23.3 187.6 24.1

Table 2

Mean values of F 0 and its standard deviation for female speakers (N = 53)

cepstrum stdev SIFT 16 stdev SIFT 30 stdev SIFT 50 stdev
mean (Hz) (Hz) mean (Hz) (Hz) mean (Hz) (Hz) mean (Hz) (Hz)

105.9 10.1 102.7 11.2 101.7 11.6 102.6 11.4

Table 3

Mean values of F 0 and its standard deviation for male speakers (N = 58)
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base, it can be restricted to a particular crime type, or it can cover only one gender,
so that the search can be limited to a particular speaker group. As a result of the

comparisons, the program provides, according to the restrictivecriteria applied, the

personal data of the speakers in the register thatbest match the speech sample of
the speaker being compared. The rate of match between the speech samples and

the sample of the speaker being compared is expressed as a distance ratio.

The program has been pre-tested by the manufacturer and the buyer. Both tests

were conducted with identical parameter settings using an equal size, 20-speaker data

base. Test results gave a very optimistic picture of the program'’s capacity and capa-
bilities. However, when we take into account the planned purpose and environment

ofthe program,small test runs conducted with restricted and clearly distinct speaker
data do not give a full picture of the capability of the system to identify speakers. When

the system is used by the police as a voiceregister application, it has to provide reliable

results based on speech data from hundreds, sometimes thousandsof speakers.
To determine thereal capability of the database program, a larger set of test runs

was initiated in a joint Phonetics Department and NBI project. To maintain the com-

parability of all test results referring to the same system. the optimized parameter
settings already programmed inwere not changed. When collecting the voice sam-

ples of over one hundred speakers, an attempt was made to simulate an authentic

recording session as accurately as possible, both from a technical standpoint and in

terms of sample taking. NBI standards were applied to the whole testing procedure
in order to identify and eliminate the error sources that affect methodology.

The databaseprogramwas taught with one hundred (C-cassette linearrecording)
speech samples (50 male, 50 female). The length of each sample was five seconds and

it consisted of personal information on each speaker, such as name and address. All of
the samples were edited in order to remove any additional sounds or silences that

might have a negative affect on the program, e.g. pauses while speaking and breath-

ing sounds. As a reference sample a five-second speech sample was taken from a

reading passage of each speaker (see section 2) and was edited according to the

same principles as mentionedabove. These edited reference samples were also filtered
with simulated telephone channels. The two sample groups used as references in the
test run consisted of one hundred same channel (C-cassette linear recording) and one

hundred differentchannel (simulated telephone filtering) speech samples.
The efficiency of the data base program was investigated in a closed test with

the two previously-mentioned groups of references. The efficiency of restriction

criteria was also tested. The restrictioncriteria used was based on the gender of the

speaker. The results of the basic test run are shown in table 4 (below). .

SEARCH RESTRICTIONS Total N of samples Success %

1) NO RESTRICTIONS

a) same channel references 100 90

b) different channel references 100 32

2) WITH SEARCH RESTRICTION

a) same channel references

male 50 92

female 50 94

b) different channel references

male 50 38

female 50 36

Table 4
Results of the basic test run (closed test)
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6. Conclusion

It is naturally too early to assess the final potential of the program on the basis of

these limited test results. The program will be widely tested both by means of the
aforementioned methodology and by other testing methods, and the influenceof

error sources will also be closely examined. It should also be useful to test how the

results of the database tests are affected by the average fundamental frequency in

speech.
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