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DIANA KRULL (Stockholm)

PERCEPTION OF ESTONIAN WORD PROSODY.

A STUDY OF WORDS EXTRACTED FROM CONVERSATIONAL SPEECH

Background

The Estonian quantity system is unusually intricate and involves different levels of

the prosodic hierarchy: segment, syllable, foot and word. The domain of syllabic
quantity is a disyllabic unit where the first, stressed syllable increases in duration with

increasing degree of quantity while the second, unstressed syllable correspond-
ingly decreases. Each quantity degree has its characteristic duration ratio between the

two initial syllables of a word: 2:3 for Q 1 (short), 3:2 for Q 2 (long) and 2:1 for Q3
(overlong) (Lehiste 1960). The relatively small temporal difference between Q2
and O 3 is complemented by differentFO patterns in the initial syllable: an early FO

peak followed by a fall in Q3, a late peak and no fall in 02. The FO pattern has been

shown tobe important for therecognition of O 3 (Lehiste 1989).
Both temporal and tonal characteristics are normally present in ”laboratory

speech” (word lists, prepared sentences, etc.). Studies of conversational speech,
however, have shown that only the differences between duration ratios remain

stable, while the characteristic FO fall in Q3 is often absent, except in sentence final

position when followed by a pause (Krull 1997). However, 1. Lehiste (1989) has

shown using synthetic stimuli that listeners need F0 information in addition to dura-

tion ratios in order to perceive Q3. Therefore. the question arises: can quantities in

conversational speech be distinguished by their acoustic characteristics alone, or do

listeners have to make use of the semantic context?

Method

To address this question, a perception test was carried out with words from the con-

versational speech recorded for an earlier experiment (Krull 1997) and presented to

listeners without context. The test material consisted of disyllabic words excised
from the conversational speech of three Estonians. one male (AE), and two females

(AT, MT). The speech consisted ofnear monologues of 1—1.5 hours in duration. The
selected words had the form (C)V;CV; where C was a short consonant, V; a short,

long or overlong vowel, and V; a short vowel. Only such words were chosen

where a different quantity degree would change the meaning of the word. for

example Q 1 veri nom.sg. ‘blood’, Q 2 veeri! 2p.imp. 'read slowly!’, Q 3 veeri part.pl.
‘fringes. edges’(Q2 and Q 3 have the same spelling). or Q 1 fuba nom.sg. 'room’, Q2
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tuuba nom.sg. ’tuba’. In previous studies of Estonian conversational speech (Krull

1993; Engstrand, Krull 1994; Krull 1997) onlycontent words were used.
In the present study, disyllabicpronouns, pre- and postpositions were included.

The number ofstimuli varied with speakers: AE had 18 Q 1 words, 22 Q 2 and 32 Q3.
The corresponding numbers for AT were 6, 6 and 17, and for MT 2, 10 and 16.

The excised words were transferred to a digital tape, for each speaker sepa-

rately. The words occurred in random order, each word twice in different sur-

roundings. The word series ofeach speaker was preceded by a short practice session.

The listeners were 24 native speakers of Standard Estonian, all but four originating
from the Northwestern parts of the country. The words were presented through a

loudspeaker, each stimulus twice with 1 s. in between and with 3 s. between stimu-

lus pairs. The stimuli were arranged in blocks of ten pairs with 8 s. between blocks.

The listeners’ task was to identify the quantity degree of each word, if necessary by
guessing, and mark their choice on an answer sheet.

Results

A multiple correlation analysis on four acoustic properties of the Q 3 stimuli
showed that Vı duration had the strongest influence on the listeners decisions, fol-
lowed by FO change within V; (see Table 1). Vl/V; durationratio had aweaker influ-

ence and was statistically significant only for stimuli of speaker AE. FO movement

across the intervocalicconsonant was not significant in any of the cases. Similar results

were obtained for the recognition of Q 3 in combined Q 2 and Q 3 stimuli, although
with slightly higher correlation coefficients: R 2 = 0.724(AE), R 2 = 0.604 (AT), and R2
= 0.713 (МТ). Еог combined Q 1 and Q 2 stimuli, only Vi duration and. for speaker
AE Vl/V; duration ratio had a statistically significant effect on listeners’ answers.
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Figure 1 shows percent Ql, Q 2 and Q 3 answers to stimuli of each of the three degrees
of quantity. The general pattern is similar for the three speakers, although the number

of correct answers varies. It can be seen that recognizing Q 1 did not cause difficulties and

that Q 2 was a little more difficult. More serious difficulties were encountered only in

connection with Q3, particularly with the stimuli ofspeaker AT. The recognition rate of

Q 3 words was very variable: for example, one word could be recognized by all 24 lis-

teners while another, similar word spoken by the same person was not recognized at

all. There could be several reasons for this difference,which will bediscussed further on.

The most obvious reason could lie in the acoustic properties of the stimuli.

STIMULUS QUANTITYSTIMULUS QUANTITY STIMULUS QUANTITY

Figure 1. Percent Ql, Q 2 and Q 3 answers to stimuli of each of these dezrees of quantity.
Black = Ql, white = Q2, and grey = Q3.
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FO peak position — typically early for Q 3 and late for Q 2 — had no statistically
significant effect in the cases where it was present (AE in 8 Q 2 and 22 Q 3 stimuli, AT

in 2 Q 2 and 10 Q3; MT 6 Q 2 and 4 Q3). However, adding peak postition raised the

squared multiple correlation to R 2 = 0.882 for the prediction of Q 3 answers in

AE’s 20 Q 2 and Q 3 stimuli, R 2 = 0.834 for Q 3 stimuli alone.
To illustrate the relation between acoustic properties and listeners’ perception

of each degree of quantity, the stimuli were arranged into three groups according
to their recognition rate: low (0—20%), mid (21—80%). and high (81—100%). (The
mid group covers a larger percentage of answers because only small differences

were foundwithin it). The four acoustic characteristics best known to influence the

perception of quantity were plotted against these groups. The results for speaker
AE canbe seen inFigure 2. The upper left graph shows the difference in V; duration
with different recognition rates: for a goodrecognition of the degree of quantity V,

durationwas clearly important for all three degrees of quantity. The graph to the

upper right shows large differences in the Vl/V; duration ratios between quanti-
ties. On the lower left graph a large differencebetween Q 1 and Q 2 on the one hand

and Q 3 on the other is seen for the FO change within Vl. On the lowerright, finally,
the placement of the FO peak within V; is shown. In this case only 22 stimuli (i.e. 11

of the 54 Q 2 and Q 3 words) were involved for speaker AE.

Percent stimuli that were recognized by more than 80% of the listeners was for

speaker AE 97% for Ql, 66% for Q 2 and 41% for Q3. The corresponding values for AT

AE AT MT

Variable Std coeff. p Std coeff. Р Std coeff. p

Vı duration 0.627 0.000 0.630 0.001 0.627 0.000

V1/V; duration ratio 0107 0.172 0.080 0.618 0.013 0.923

% FO change in Vı —0.403 0.000 -0.149 0.410 -0.380 0.011

% FO change across C -0.042 0.585 -0.059 — 0.674 0.036 — 0.954

Multiple R2 0.688 0.537 0.654

Table 1

Multiple correlation analysis of four acoustic properties as predictors
of the recognition of Q 3 stimuli

$рк O SD n Q2 SD n Q3 SD n

Vı duration AE 84 20.1 35 145 305 29 245 56.3 26

AT 52 1.2 4 114 39 5 214 20.4 5

MT 63 290 12 162 0 2 213 215 9

Vi/Vaduration AE 066 0.16 35 195 057 29 344 096 26

ratio AT 082 001 4 175 073 5 227 084 5

MT 064 020 12 125 0 2 295 120 9

% FO change AE 239 974 35 -1.82 713 29 -27.39 1477 26

inVı AT 081 152 ¢4 483 376 5 -1768 709 5

MT 019 861 12 17.2 0 2 -2637 19.16 9

% FO change AE -106 1623 35 -299 9.01 26 094 911 26

across C AT -2.59 122 4 671 081 5 -1558 4746 5

MT -233 201 12 -7.5 0 2 1646 3449 9

Peak placement AE - - - 064 004 8 031 010 12

(in % of Vidur) AT - - - - - 0 - - 0

MT - - - 068 0 2 040 005 3

Table 2

Mean temporal and tonal values in stimuli recognized by more than

80% of the listeners
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were 100%, 25% and 16%, and for MT 100%, 17% and 26%. The varying recognition
rate of Q 3 corresponds well with the results of the multiple correlation analyses: AE

had three variables with a highly significant influence on Q 3 the recognition, AT one

(Vı duration), and MT two (V; duration and FO change in Vj). The large differences in

FO change across the intervocalic consonant may be due to the influence of the sur-

roundings in the conversational speech.

Discussion

An earlier study using partly the same material (Krull 1997) showed that the typ-
ical duration ratios between the first and second syllable constituted the largest and
most stable difference between Q 2 and Q 3 in conversational speech. Even differ-

ences in Vı duration were robust, in spite of a changing speaking rate. The char-
acteristic FO fall in Q3, however, tended tobe neutralized. Several studies have
shown that differences in duration, even intersyllabic duration ratios alone are not

sufficient for the recognition of Q 3 (Lehiste 1989; Eek 1980a; 1980b; Eek, Meister

1997) If this is the case, listeners to conversational speech probably have to use the
semantic context in order to understand the words.

The present study seems to confirm this: without their context the majority of

O 3 stimuli were not recognized. According to a statistic analysis, listeners used Vi
duration as the main indicator of guantity. At least in part, this influence may
have been enhancedby the absence of the context and in speech tempo. A certain

minimum V; duration seems tobe necessary for a highrecognition rate of Q3, in
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Figure 2. Vı duration, Vl/V; duration ratio, percent FO change within Vi and FO peak posi-
tion (as ratio of Vi duration) in relation to different recognition rates of the

guantity degree of the stimulus. Filled sguares = 01, unfilled sguares = 02, filled
circles = 03. See text for details.
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the present material the minimum was 180 ms. However, it is not sufficient with-

out additional characteristics: for example, stimuli considerably longer than 180

could have a high rate of Q 2 identifications if FO was not falling.
The importance of FO is furtherexemplified by the following comparison. The

material in Krull 1997 contained two kinds ofwords: those that could change their

meaning with the degree of quantity, and those that could not. In the present
study, the second kind ofwords were not included. In the earlier study quite often

а FO rise — instead of the typical fall — could be found in V 1 of Q 3 words, with the

exception of sentence final prepausal words. This was particularly pronounced in

the case of speaker AE: in the earlier study he had a mean FO rise of about 8% in Vı
of sentence internal Q 3 words, in the present material, he had. instead. a fall of over

12%. It thus seems that a speaker may — albeit unconciously — be more careful
when pronouncing words whose meaning could be changed by changing the degree
of quantity. This phenomenon should be studied more in detail in the future.

There may be additional factors influencing the listeners’ decisions.For example,
the relative frequency of occurrence of a word in the listeners’ vocabulary could

influence their choice оЁ answer. It is not unusual that a CV,CV; combination ap-
pears much more frequently in one degree of quantity than in another. In view of

this and other possible uncontrolled influences, the prediction of therecognition rate

for Q 3 stimuli could be surprisingly high: e.g. R 2 = 0.834 for AE's Q 3 words with a

typical FO peak. A study ofaddidional factors such as the distribution of energy
within the disyllabic unit as proposed by A. Eek (1986) could improve it still more.
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