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Abstract. Laboratory experiments of thermal destruction of waste tires (scraps of 200 x 300 mm)
under standard conditions in retorts with external heating (final temperature 520°C) were carried

out. The oil yield was 40-50% on processed rubber basis. Approximately 1/3 of the total oil

obtained was the fraction boiling at up to 200°C. The solid residue formed 35% of the initial

rubber material. The ash content of the solid residue was 6% and the gross heat of combustion was

28.5 MJ/kg. Metallics present in tire scraps was easily removable.
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INTRODUCTION

Rubber waste, especially used tires of cars and other vehicles, has become one

of the most serious ecological problems nowadays [l-3]. One can find a large
number of patents in which different solutions to the problem are suggested.
However, according to the published information no single acceptable solution

exists as yet.
In Estonia retorting of crushed tires together with oil shale (in the ratio 1:10)

has found industrial use in the solid heat carrier unit at the Estonian Power Plant

[4]. This process yields valuable oil. Soot from rubber retorting and metallics
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mixed with ash from the solid residue, the so-called black ash, burnt in a

fluidized bed furnace are transported to an ash dump. Joonas and co-workers [s]

studied possibilities of the utilization of waste tires in vertical retorts widely
used in the Estonian oil shale industry. In both cases [4, 5] waste tires were

crushed before treatment. This required additional energy and expensive

crushing equipment. We studied the possibilities of complete utilization of waste

tires without previous crushing using a laboratory retort.

EXPERIMENTAL

To study the possibilities of thermal destruction of tire scraps, a series of

laboratory experiments of retorting under standard conditions in retorts with

external heating (final temperature 520°C) were carried out. The dimensions of

the retort were as follows: height 390 mm, length in the hot zone 250 mm, and

diameter 109 mm.

A tire (isoprene type rubber; C, 82.1%; H, 7.2%; scrap 200 x 300 mm; weight
640-835 g) was rolled up and used for one experiment. Rectification of total

rubber 01l was performed using an APH-2 device.

RESULTS AND DISCUSSION

Ten experiments of laboratory retorting of 7678.0 g of waste tire with a

660.4 g content of metal yielded 3161.0 g of oil, 329.0 g of water, 660.4 g of

metal, 2538.8 g of solid residue, and 162.0 g of ash. The main products of

thermal destruction were rubber oil and solid residue (respectively 41% and 35%

on initial rubber basis). Recalculation of these data to metallic free rubber

material showed that the yield of oil might be 45%, which is a very good result.

For the characterization of rubber oil its physical and chemical characteristics

were determined and compared with the corresponding parameters of Estonian

shale fuel oil (Table 1). It is interesting to say that the sodification temperature
of rubber oil was very low (—46°C). The high iodine value (87.3 g of iodine per
100 g of oil) points to a high content of unsaturated compounds.

The rectification of total rubber oil into fractions (Table 2) showed that the

gasoline fraction boiling at up to 200°C formed 32.5% of the total oil. The

composition of rubber oil fractions will be presented elsewhere.
The solid residue formed at retorting was crumbly and the dry matter and

metallics present in the tire scraps were easily removable. The ash content of the

solid residue was 6.02% and the gross heat of combustion was 28.5 MJ/kg. The

elementary composition of the solid residue (in %) was as follows: C, 88.5; H,
1.70; N, 0.12; and S, 1.09. The main constituent of solid residue was

undoubtedly carbon black, which is added to rubber mass.
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CONCLUSION

The results of laboratory retorting showed that the utilization of large tire

scraps 1s technically possible with oil, solid residue, and metal produced.

Parameter | Rubber oil | Shale fuel oil

Density, d*, g/cm’ 0.8980 0.9725
d*,, glem’ 0.8995 -

Kinematic viscosity,
V29, €St 4.1 42.1

V40, CSt 2.6 -

Flash point, °C +5 (in closed crucible) +26 (in open crucible)

Moisture, W% 0.24 0.43

Sulphur, % 0.64 0.81

Cl" and SO.*, % 0 0.07

Active sulphur compounds 0 0

Sodification temperature, °C 46 —34

pH of water under oil 3.82 -

Acidity, recalculated to HC1% 0.11 =

Iodine value, g of iodine per 100 g of oil 87.3 -

— not determined.

Table 1. Physical and chemical characteristics of total rubber oil and shale fuel oil

Into Out

Retorting oil 1760.0 100.0 Water 4.1 0.2

incl. water 4.3 0.2 Oil fractions, °C

oil 1755.7 99.8 to 160 347.5 19.7

Total 1760.0 100.0 160-180 180.6 10.3

180-200 44.3 2.5

200-240 51.3 2.9

240-260 130.2 7.4

260-280 181.0 10.3

280-300 85.8 49

300-320 26.2 1.5

320-340 74.3 4.2

340-360 92.2 513

. Total oil 1213.4 69.0

Distillation residue 542.5 30.8

Total 1760.0 100.0

Table 2. Material balance of rectification ofwaste tire oil
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KASUTATUD KUMMIJÄÄTMETE TERMILISEST

DESTRUKTSIOONIST

Jüri KANN, Mart MARGUSTE, Anne ORAV ja Jüri KRIIS

Korraldati katseseeria, et uurida autorehvi tiikkide (200 x 300 mm) termilist

lagundamist laboratoorsesretordis (I6pptemperatuuriga 520 °C). Pohilisteks utte-

produktideks olid 6li ja poolkoks vastavalt 45 ja 38% metallivaba kummi-

materjali kohta. Saadud poolkoks oli metallkoordist kergesti eraldatav ja sisaldas

peamiselt kummimassile lisatud tahma. Kummidli tehnilistest parameetritest
dratas tdhelepanu oli madal hangumistemperatuur (—46°C) ja suur joodiarv
(87,3 g 100 g &li kohta), mis viitas &li korgele kiillastumatuse astmele. Oli
rektifikatsioonil saadi alla 200°C keeva osa (bensiinifraktsiooni) iile 30% sum-

maarsest olist.
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