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Abstract. A previously unknown flagellated lifestage of the gill pathogen Dermocystidium cyprini
(Cervinka et Lom, 1974) from common carp is described. The flagellated spores were 2—3 pm in

diameter and had a single at least 8 um long flagellum with nine peripheral and two central

microtubules. The flagellated spores were found both in mature cultured cysts incubated in water

and in the biggest fresh cysts removed from the gills of fingerling common carp in May.
Implications of the finding for the systematics of the genus Dermocystidium are discussed.
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INTRODUCTION

Dermocystidium cyprini (Cervinka et Lom, 1974) is a gill pathogen of

common carp (Cyprinus carpio), which can cause sporadic outbreaks with high
mortality but mostly causes moderate losses of wintering fingerlings in fish farms

(Lopukhina, 1968; Cervinka et al., 1974; Kasesalu & Lotman, 1994, 1995). The

diagnostic features and some of the life stages of this species were described by
Cervinka et al. (1974). The parasite is recognized by white cysts of moderately
ovoid shape that reach about 2 mm in diameter. The development of cysts is

supposed to be associated with transformation of uninucleate cells into multi-

nucleate plasmodia. After fragmentation of plasmodia, spores develop inside the

cysts. The fresh spores are 4-5 um in diameter and have a refractile central

inclusion.
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The genus Dermocystidium is of uncertain taxonomical relationship, assigned
by some investigators to protists (Garkavi et al., 1980; Nash et al., 1989), by
others to the lower fungi (Pauley, 1967; Allen et al., 1968).

Perkins (1976) described a flagellated stage of D. marinum that has a

rudimentary apical complex. Levine (1978) therefore included this species into

the newly established phylum Apicomplexa under the generic name Perkinsus.

Other species of Dermocystidium did not receive a clear taxonomic status in

Levine’s system.
Olson et al. (1991) reported formation of uniflagellated zoospores within

discharged spores of D. salmonis. These flagellated stages, lacking any apical
complex, represented the agents of disease transmission. It is worth noting here

that the disease transmission mechanisms for other species of Dermocystidium
are still unknown.

This paper is the first report of flagellated spores of D. cyprini.

MATERIAL AND METHODS

The cysts of Dermocystidium cyprini were removed from the gills of common

carp fingerlings in February, March, April, and May 1996. The cysts were

observed under a light microscope, washed repeatedly in fresh water, and

incubated in petri dishes in fresh water at 4°C in the absence of antibiotics

(Olson et al., 1991). The observed cysts were in three different developmental
stages: plasmodia (n =l7, removed in February), dividing plasmodia (n =2l,
removed in March), and early sporogenesis (n =2O, removed in April). In

cultures where maturation did not occur the experiment was terminated after 60

daysof culture.

Mature cultured cysts as well as the biggest fresh cysts removed from gills of

fingerling common carp were examined using both light and electron

microscopy. For the latter purpose, the cultures were centrifuged and fixed in

2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) at 4°C for 24 h. The

samples were post-fixed for 1 h with 2% OsO4 in the same buffer. The fixed

material was dehydrated and embedded in EPON. The sections were stained with

uranyl acetate and lead citrate prior to examination with TESLA BS 500. For

light microscopy, smears of cysts were airdried, fixed in methanol, and stained

with May Griinwald-Giemsa.

RESULTS

The cysts in the stage of early sporogenesis matured normally within two

weeks. Of 21 cysts in the dividing plasmodia stage 3 matured after three weeks,
others did not mature.
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Flagella-like structures were found in well developed cysts between typical
spores (Fig. 1). Electron microscopy revealed a large lipid-like osmiophilic body,
small peripheral nuclei, a small amount of endoplasmatic reticulum, and one or

two mitochondria with tubular cristae in mature spores. The spores contained

several small lipid-like inclusions, which fused into a large one in the process of

maturation. Some of the spores were kidney-shaped with a lipid-like inclusion in

one side and a flagellum in the other (Fig. 2). The lipid-like inclusions were

smaller in spores with a flagellum. Flagellated spores were 2-3 um in diameter,

being therefore smaller than those without a flagellum. They had a single flagellum
with nine peripheral and two central microtubules, indistinct nuclei, and not very

clearly resolved mitochondria. The flagellum was at least 8 um long.
We also found flagellated spores in some cysts that were removed from the

fingerlings of common carp in May. These cysts were swollen and fragile.

Fig. 1. Dermocystidium cyprini. Smear of the mature spores that where incubated at 4 °C (May

Griinwald-Giemsa). * flagellated spores among unflagellated spores.
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Fig. 2. Dermocystidium cyprini. Transmission electron micrographs of developing flagellated
spores. L, lipid inclusion; F, flagella; N, nucleus.
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DISCUSSION

There are relatively few studies of the spore ultrastructure of Dermocystidium
in spite of its extreme importance for the taxonomy of the genus. Therefore,
several important points are still open for debate.

The features of cysts and spores observed during this study are mostly
consistent with those described by Cervinka et al. (1974) for D. cyprini.
However, they did not observe flagellated spores of this species.

We could not find characteristic structures of apical complex as it was

described in zoospores of D. marinum by Perkins (1976). Neither could we find

vacuoplasts, laminated bodies or ramified hyphae, described in some other

species of the genus Dermocystidium (Lom & Dykova, 1992).
Olson et al. (1991) described the development of motile uniflagellated

zoospores in D. salmonis and the transmission of the disease by these zoospores.
The ultrastructure of the flagellated spores of D. cyprini is very similar to that of

D. salmonis as described by Olson et al. (1991). The presence of flagellated
spores in the swollen, fragile cysts in May, at the end of the annual epizootic
cycle, and the lack of such spores in earlier samples, suggest the transmission of

the disease by the flagellated spores. This further strengthens the similarity
between these two species. It is possible that a flagellated stage for disease

transmission is common among Dermocystidium spp., although this has not been

described due to our insufficient knowledge on the lifecycle of the parasite. This

hypothesis, however, remains to be confirmed by further investigations. The

biology of the genus Dermocystidium and similar forms clearly needs further

study.
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Dermocystidium cyprini VIBURIGA SPOORID

Kaja LOTMAN ja Jiirt KASESALU

On esmakordselt kirjeldatud karpkala parasiidi Dermocystidium cyprini
viburiga spoore. 2—3 um ldbimddduga spoorid olid varustatud iihe vihemalt 8 pm

pika viburiga, milles oli iiheksa servmist ja kaks keskset mikrotorukest. Viburiga

spoore leiti nii kultuuris kasvatatud kiipseis tsiistides kui ka mai 16pul karp-
kala 16pustelt eemaldatud tsiistides. Arutelu kisitleb leiu tdhendust perekonna
Dermocystidium siistemaatikale.
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