On polynomials that are weakly uniformly continuous on the unit ball of a Banach space

Kristel Mikkor

Institute of Pure Mathematics, University of Tartu, 50090 Tartu, Estonia; kristelm@math.ut.ee

Received 14 October 2005, in revised form 19 December 2005

Abstract. We prove quantitative strengthenings of results on polynomials that are weakly uniformly continuous on the unit ball of a Banach space due to Aron, Lindström, Ruess, and Ryan (Proc. Amer. Math. Soc., 1999, 127, 1119–1125) and to Toma (Aplicações holomorfas e polinômios τ-contínuos. 1993). Our method is based on the uniform factorization of compact sets of compact operators.

Key words: Banach spaces, uniform compact factorization, n-homogeneous polynomials.

1. INTRODUCTION

Let X and Y be Banach spaces over the same, either real or complex, field \mathbb{K}. We denote by $L(X,Y)$ the Banach space of all continuous linear operators from X to Y, and by $K(X,Y)$ its subspace of compact operators.

Let $L^s(n)X$ denote the Banach space of continuous symmetric n-linear forms on X and let $P(n)X$ denote the Banach space of continuous n-homogeneous polynomials on X. Then for each $P \in P(n)X$ there is a unique $A_P \in L^s(n)X$ satisfying $P(x) = A_P(x, \ldots, x)$ for each $x \in X$.

Recall that $P \in P(n)X$ is weakly uniformly continuous on the closed unit ball B_X of X if for each $\epsilon > 0$ there are $x_1^*, \ldots, x_n^* \in X^*$ and $\delta > 0$ such that if $x, y \in B_X$, $|x_i^*(x - y)| < \delta$ for $i = 1, \ldots, n$, then $|P(x) - P(y)| < \epsilon$. Let $P_{wu}(n)X$ denote the subspace of $P(n)X$ consisting of the polynomials that are weakly uniformly continuous on B_X. The corresponding subspace of $L^s(n)X$ is denoted by $L^s_{wu}(n)X$. Notice that $P_{wu}(n)X$, with the norm induced from $P(n)X$, is a Banach space (see [1], Proposition 2.4).
For each \(P \in \mathcal{P}(nX) \) there is a linear operator \(T_P : X \to \mathcal{L}^s(n^{-1}X) \) defined by
\[
(T_P x_1)(x_2, \ldots, x_n) = A_P(x_1, x_2, \ldots, x_n).
\]
Clearly, the correspondence \(A_P \to T_P \) is linear and \(\|T_P\| = \|A_P\| \). According to \([1]\), \(P \in \mathcal{P}_{wu}(nX) \) if and only if \(T_P \in \mathcal{K}(X, \mathcal{L}^s(n^{-1}X)) \). Moreover, if \(P \in \mathcal{P}_{wu}(nX) \), then \(T_P \in \mathcal{K}(X, \mathcal{L}^s_{wu}(n^{-1}X)) \).

In 1999, Aron et al. (see \([2]\), Proposition 5) proved the following result.

Theorem 1 \([2]\). Let \(X \) be a Banach space and let \(n = 2, 3, \ldots \). Let \(C_n \) be a relatively compact subset of the space \(\mathcal{K}(X, \mathcal{L}^s_{wu}(n^{-1}X)) \). Then there exists a compact subset \(C \) of \(X^* \) such that for all \(S \in C_n \) and all \(x \in X \)
\[
|(Sx)(x, \ldots, x)| \leq \sup_{x^* \in C} |x^*(x)|^n.
\]

Theorem 1 together with its proof in \([2]\) gives no information about the size of the set \(C \) corresponding to the size of \(C_n \).

The purpose of this article is to prove the following quantitative strengthening of Theorem 1. We denote \(|C| = \sup\{\|x\| : x \in C\} \), where \(C \) is a bounded set in a Banach space.

Theorem 2. Let \(X \) be a Banach space and let \(n = 2, 3, \ldots \). Let \(C_n \) be a relatively compact subset of the space \(\mathcal{K}(X, \mathcal{L}^s_{wu}(n^{-1}X)) \). Then there exists a compact circled subset \(C \) of \(X^* \) with \(|C| = \max\{|C_n|, 1\} \) such that for all \(S \in C_n \) and all \(x \in X \)
\[
|(Sx)(x, \ldots, x)| \leq \sup_{x^* \in C} |x^*(x)|^n.
\]

We use a standard notation. A Banach space \(X \) will be regarded as a subspace of its bidual \(X^{**} \) under the canonical embedding. The closure of a set \(A \subset X \) is denoted by \(\overline{A} \). The linear span of \(A \) is denoted by \(\text{span} \, A \) and the circled hull by \(\text{circ} \, A \).

2. PROOF OF THEOREM 2

The proof of Theorem 2 will be based on a factorization result that easily follows from

Lemma 1. Let \(X \) and \(Y \) be Banach spaces. For every relatively compact subset \(C \) of \(\mathcal{K}(X, Y) \), there exist a reflexive Banach space \(Z \), a linear mapping \(\Phi : \text{span} \, C \to \mathcal{K}(X, Z) \), and a norm one operator \(v \in \mathcal{K}(Z, Y) \) such that \(S = v \circ \Phi(S) \) for all \(S \in \text{span} \, C \). The mapping \(\Phi \) restricted to \(C \) is a homeomorphism and satisfies
\[
\|S\| \leq \|\Phi(S)\| \leq \min\{|C|, |C|^{1/2} b^{1/2} \|S\|^{1/2}\},
\]
\(S \in C \), where \(b \approx 2^{1/2} \) is an absolute constant.
Proof. Since \(\text{circ} \mathcal{C} \) is a compact subset of \(\mathcal{K}(X, Y) \), by [3], Theorem 6, there exist a reflexive Banach space \(Z \), a linear mapping \(\Phi : \text{span} \ C \rightarrow \mathcal{K}(X, Z) \), and a norm one operator \(v \in \mathcal{K}(Z, Y) \) such that \(S = v \circ \Phi(S) \), for all \(S \in \text{span} \ C \). Moreover, the mapping \(\Phi \) restricted to \(\text{circ} \mathcal{C} \) is a homeomorphism satisfying

\[
\|S\| \leq \|\Phi(S)\| \leq \min \left\{ \frac{d}{2}, \left(\frac{d}{2} \right)^{1/2} b^{1/2}\|S\|^{1/2} \right\},
\]

where \(d = \text{diam} \, \text{circ} \mathcal{C} \). To prove that it is also compact, let us fix an arbitrary \(\varepsilon > 0 \). Let \(\{\Phi(S_1), \ldots, \Phi(S_n)\} \), \(S_k \in C_2 \), be an \(\varepsilon \)-net in the relatively compact set \(\{\Phi(S) : S \in C_2\} \). Since \(\Phi(S_k) \) is a compact operator, \((\Phi(S_k))^* \) is also a compact operator and therefore \((\Phi(S_k))^*(B_{Z^*}) \) is a relatively compact set. Since \(\bigcup_{k=1}^n (\Phi(S_k))^*(B_{Z^*}) \) is clearly a relatively compact \(\varepsilon \)-net in the set \(\{(\Phi(S))^*(z^*) : S \in C_2, z^* \in B_{Z^*}\} \), this set is relatively compact. Hence, \(C_\Phi \) is a compact set.

Moreover, we get

\[
\|\Phi(S)x\| = \sup_{z^* \in B_{Z^*}} |z^*(\Phi(S)x)| = \sup_{z^* \in B_{Z^*}} |((\Phi(S))^*(z^*))(x)| \leq \sup_{x^* \in C_\Phi} |x^*(x)|
\]

for all \(S \in C_2 \) and all \(x \in X \).
Denoting \(C_v = \overline{v(B_Z)} \subset X^* \), we have that \(C_v \) is circled and compact, and
\[
\|v^* x\| = \sup_{z \in B_Z} |(v^* x)(z)| = \sup_{z \in B_Z} |(v z)(x)| \leq \sup_{x^* \in C_v} |x^*(x)|
\]
for all \(x \in X \).

Finally, let \(C = C_\Phi \cup C_v \). Then \(C \) is circled and compact, and
\[
|(Sx)(x)| \leq \|v^* x\| \|\Phi(S)x\| \leq \sup_{x^* \in C_v} |x^*(x)| \sup_{x^* \in C_\Phi} |x^*(x)| \leq \sup_{x^* \in C} |x^*(x)|^2
\]
for all \(S \in C_2 \) and all \(x \in X \).

By the definition of \(|C| \),
\[
|C| = \sup_{x^* \in C} \|x^*\| = \sup_{x^* \in C_\Phi \cup C_v} \|x^*\| = \max\{ \sup_{x^* \in C_\Phi} \|x^*\|, \sup_{x^* \in C_v} \|x^*\| \}
\]
\[
= \max\{|C_\Phi|, |C_v|\}.
\]
Let us first estimate
\[
|C_\Phi| = \sup_{x^* \in C_\Phi} \|x^*\| = \sup_{S \in C_2} \|\Phi(S)^*(z^*)\| = \sup_{S \in C_2} \|\Phi(S)^*\| = \sup_{S \in C_2} \|\Phi(S)\|.
\]

Using the conclusion of Lemma 1, we have for all \(S \in C_2 \),
\[
\|S\| \leq \|\Phi(S)\| \leq \sup_{S \in C_2} \|\Phi(S)\| = |C_\Phi|, \quad \text{and}
\]
\[
|C_\Phi| \leq |C_2|.
\]
Hence
\[
|C_2| \leq |C_\Phi| \leq |C_2|,
\]
meaning that \(|C_\Phi| = |C_2| \). Let us now compute
\[
|C_v| = \sup_{x^* \in C_v} \|x^*\| = \sup_{z \in B_Z} \|v z\| = \|v\| = 1.
\]
Consequently,
\[
|C| = \max\{|C_\Phi|, |C_v|\} = \max\{|C_2|, 1\}.
\]

Assume that the result is true for \(n - 1 \), where \(n \in \{3, 4, \ldots\} \). Let \(C_n \) be a relatively compact subset of the space \(\mathcal{K}(X, \mathcal{L}_W^{s,n-1}(X)) \). By Lemma 1 there exist a reflexive Banach space \(Z \), a linear mapping \(\Phi : \text{span} C_n \rightarrow \mathcal{K}(X, Z) \), and a norm
one operator $v \in \mathcal{K}(Z, \mathcal{L}^n_{wu}(n^{-1}X))$ such that $S = v \circ \Phi(S)$ for all $S \in \text{span } C_n$. Then for all $S \in C_n$ and for all $x \in X$, considering $(x, \ldots, x) \in (\mathcal{L}^n_{wu}(n^{-1}X))^*$ (note that if $A \in \mathcal{L}^n_{wu}(n^{-1}X)$, then $((x, \ldots, x), A) = A(x, \ldots, x)$),

$$|(Sx)(x, \ldots, x)| = |v(Sx)(x, \ldots, x)| = |(v^*(x, \ldots, x))\Phi(Sx)|,$$

hence

$$|(Sx)(x, \ldots, x)| \leq \|v^*(x, \ldots, x)\|\|\Phi(Sx)\|.$$

Put, as above,

$$C_\Phi = \{(\Phi(S))^*(z^*) : S \in C_n, z^* \in B_{Z^*}\} \subset X^*.$$

Then C_Φ is circled and compact, and we get

$$\|\Phi(S)x\| = \sup_{z^* \in B_{Z^*}} |z^*\Phi(S)x| = \sup_{z^* \in B_{Z^*}} |((\Phi(S))^*(z^*))(x)| \leq \sup_{x^* \in C_\Phi} |x^*(x)|$$

for all $S \in C_n$ and for all $x \in X$. Recall that $v(B_Z)$ is a relatively compact subset of $\mathcal{L}^n_{wu}(n^{-1}X)$. Hence

$$C_{n-1} := \{T_P : P \in \mathcal{P}_{wu}(n^{-1}X), A_P \in v(B_Z) \} \subset \mathcal{L}(X, \mathcal{L}^n(n^{-2}X))$$

is also relatively compact. According to [1], $C_{n-1} \subset \mathcal{K}(X, \mathcal{L}^n(n^{-2}X))$. Therefore, by the induction hypothesis, there is a circled and compact subset $C_v \subset X^*$ with $|C_v| = \max\{|C_{n-1}|, 1\}$ such that

$$|(T_Px)(x, \ldots, x)| \leq \sup_{x^* \in C_v} |x^*(x)|^{n-1}$$

for all $P \in \mathcal{P}_{wu}(n^{-1}X)$ with $A_P \in v(B_Z)$. Since $v(B_Z) \subset \mathcal{L}^n_{wu}(n^{-1}X)$, for all $z \in B_Z$ there exists $P \in \mathcal{P}_{wu}(n^{-1}X)$ such that $vz = A_P$. By definition, $A_P(x, x, \ldots, x) = (T_Px)(x, \ldots, x)$, $x \in X$. Hence, for all $z \in B_Z$ and all $x \in X$,

$$|(vz)(x, \ldots, x)| = |A_P(x, x, \ldots, x)| = |(T_Px)(x, \ldots, x)| \leq \sup_{x^* \in C_v} |x^*(x)|^{n-1}.$$

Therefore

$$\|v^*(x, \ldots, x)\| = \sup_{z \in B_Z} |(v^*(x, \ldots, x))(z)|$$

$$= \sup_{z \in B_Z} |(vz)(x, \ldots, x)| \leq \sup_{x^* \in C_v} |x^*(x)|^{n-1}.$$

Finally, let $C = C_\Phi \cup C_v$. Then C is circled and compact, and

$$|(Sx)(x, \ldots, x)| \leq \|v^*(x, \ldots, x)\|\|\Phi(S)x\|$$

$$\leq \sup_{x^* \in C_v} |x^*(x)|^{n-1} \sup_{x^* \in C_\Phi} |x^*(x)| \leq \sup_{x^* \in C} |x^*(x)|^{n}$$

for all $S \in C_n$ and all $x \in X$.

20
To complete the proof, let us show that $|C| = \max \{|C_n|, 1\}$. Similarly to the case $n = 2$, we have

$$|C| = \sup_{x^* \in C} \|x^*\| = \sup_{x^* \in C_{\Phi} \cup C_v} \|x^*\| = \max \{\sup_{x^* \in C_{\Phi}} \|x^*\|, \sup_{x^* \in C_v} \|x^*\|\}$$

and

$$|C_{\Phi}| = \sup_{x^* \in C_{\Phi}} \|x^*\| = \sup_{S \in C_n} \|(\Phi(S))^*(z^*)\| = \sup_{S \in C_n} \|(\Phi(S))^*\| = \sup_{S \in C_n} \|\Phi(S)\|.$$

Using the conclusion of Lemma 1, we have for all $S \in C_n$,

$$\|S\| \leq \|\Phi(S)\| \leq |C_{\Phi}|$$

and

$$\|\Phi(S)\| \leq |C_n|.$$

Hence

$$|C_n| \leq |C_{\Phi}| \leq |C_n|,$$

meaning that $|C_{\Phi}| = |C_n|$. Let us show that $|C_v| = 1$. Recall that $|C_v| = \max\{|C_{n-1}|, 1\}$. Since

$$|C_{n-1}| = \sup_{T_p \in C_{n-1}} \|T_p\| = \sup_{A_p \in v(BZ)} \|A_p\| \leq \sup_{z \in BZ} \|vz\| = \|v\| = 1,$$

we clearly have $|C_v| = 1$. □

3. APPLICATION TO POLYNOMIALS

The next theorem is proved by Toma [4] (an alternative proof is given in [2]).

Theorem 3 [4]. Let X be a Banach space, let $n = 2, 3, \ldots$, and let $P \in \mathcal{P}^{(n)}(X)$. The polynomial $P \in \mathcal{P}_{wu}^{(n)}(X)$ if and only if there exists a compact subset C of X^* such that for all $x \in X$

$$|P(x)| \leq \sup_{x^* \in C} |x^*(x)|^n.$$

The following is a quantitative version of Theorem 3.

Corollary 1. Let X be a Banach space, let $n = 2, 3, \ldots$, and let $P \in \mathcal{P}^{(n)}(X)$. The following are equivalent:

(a) $P \in \mathcal{P}_{wu}^{(n)}(X)$,

(b) there exists a compact subset C of X^* such that for all $x \in X$

$$|P(x)| \leq \sup_{x^* \in C} |x^*(x)|^n,$$
(c) there exists a compact circled subset C of X^* with

$$\max\{\|P\|, 1\} \leq |C| \leq \max\left\{\frac{n^n}{n!}\|P\|, 1\right\}$$

such that for all $x \in X$

$$|P(x)| \leq \sup_{x^* \in C} |x^*(x)|^n.$$

Proof. (a) \Rightarrow (c). Let $P \in \mathcal{P}_{wu}(nX)$, then $\{T_P\} \subset \mathcal{K}(X, \mathcal{L}_{wu}(n^{-1}X))$. Applying Theorem 2 to $C_n = \{T_P\}$, we get that there is a compact circled subset C of X^* with $|C| = \max\{\|T_P\|, 1\}$ such that for all $x \in X$

$$|P(x)| = |A_P(x, x, \ldots, x)| = |(T_P x)(x, \ldots, x)| \leq \sup_{x^* \in C} |x^*(x)|^n.$$

Applying the polarization formula (see, for example, [\ref{5}], Theorem 1.7), we have

$$\|P\| \leq \|T_P\| \leq \frac{n^n}{n!}\|P\|.$$

Hence $\max\{\|P\|, 1\} \leq |C| \leq \max\{\frac{n^n}{n!}\|P\|, 1\}$.

(c) \Rightarrow (b). Obvious.

(b) \Rightarrow (a). Follows immediately from Theorem 3. \square

ACKNOWLEDGEMENTS

This article is a part of my PhD thesis, written under the guidance of Eve Oja at the University of Tartu. I gratefully acknowledge her valuable help. I thank referees for their suggestions and comments. This research was supported by the Estonian Science Foundation (grant No. 5704).

REFERENCES

Banachi ruumi ühikkeral nõrgalt ühtlaselt pidevate polünoomidest

Kristel Mikkor

On tõestatud Aroni-Lindströmi-Ruessi-Ryani \(^2\) ja Toma \(^4\) teoreemide kvantitatiivsed versioonid Banachi ruumi ühikkeral nõrgalt ühtlaselt pidevate polünoomide kohta. Tõestusmeetod tugineb kompaktsete operaatorite kompaktsete hulkade ühtlasele faktorisatsioonile.