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Abstract. An alternative solution of the static state feedback linearization problem for the discrete-time case is given. This solution
is based on the sequence of distributions, whose computation requires only the knowledge of the backward shift equations. This
computational method is especially suitable for the class of discrete-time systems, obtained from the implicit Euler discretization
of continuous-time systems. As a practical example the implicit Euler discretization of hydraulic press equations is considered.
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1. INTRODUCTION

The static state feedback linearization of nonlinear control systems, including the discrete-time case, is one
of the most studied problems in nonlinear control. We examine in this paper only the discrete-time sys-
tems, for which the question of the existence of a regular static state feedback and the state transformation,
allowing transforming the discrete-time system equations into the Brunovsky form, has been studied, for
instance, in [1]–[11]. The necessary and sufficient conditions have been formulated in many different ways
and various linearization algorithms have been introduced in those papers.

Note that the existing methods, except the one introduced in [1], require the use of both forward and
backward shifts in computations. The practical application of such solutions has limitations in the case when
the system is described in terms of backward shift equations and not via classical forward shift equations
as usual. This is especially true when the backward shift equations cannot be easily transformed into the
classical form. That case requires solving a system of n nonlinear algebraic equations if the system is state
reversible or n+m equations if the system is only submersive. One typical subclass of systems described in
terms of backward shift equations results from sampling when one prefers the implicit Euler discretization
scheme to the explicit scheme in order to enlarge the numerical stability region [6]. The paper [12] shows
that the explicit Euler method has certain drawbacks for global approximation of homogenous systems
(taking an intermediate place between linear and nonlinear systems) with nonzero degrees, whereas the
implicit Euler scheme ensures convergence of the approximating solutions. For the additional advantages

∗ Corresponding author, tanel.mullari@taltech.ee



12 Proceedings of the Estonian Academy of Sciences, 2020, 69, 1, 11–26

of the implicit Euler method, see [12] and the references therein. As for the method from [1], note that it
uses the forward shift equations only, but requires also the inverse of the Jacobi matrix of the system, whose
computation can be difficult.

In this paper we suggest an alternative approach to solve the feedback linearization problem which needs
only backward shifts and is based on the results of [5]. Strictly speaking, we do not suggest a new method
but rather show that the solvability conditions of the solution in terms of certain distributions in [5] can
be replaced by conditions in terms of different but related distributions, the computation of which can be
completed in terms of backward shifts only. The idea of avoiding forward shifts relies on the application of
the concept of distribution invariants and their relative degrees in computations. Our approach is somewhat
similar to the method from [6] to check the linearizability property and define the coordinate transformation.
The method introduced in [6] is also based on the invariants of the distributions, but in this paper we do not
compute the forward shifts of these invariants directly. Our method is therefore easier to apply, when the
forward shift equations are difficult to find.

Finally, note that the results of this paper are generic, i.e. valid for almost every point. Since we look at
dimensions (or ranks) over the field of functions, not over R, there is no point about constant dimensionality
of the distributions. A generic rank is a maximal rank on an open and dense set. The rank may drop on some
subset. Reducing the set, one can always achieve a constant rank over R, see more in [13].

2. FEEDBACK LINEARIZATION: STANDARD SOLUTION

Consider the extended discrete-time nonlinear control system [5]

x〈1〉(t) = Φ̄(x(t),u(t)) , z(t) = χ (x(t),u(t)) , (1)

where x〈1〉(t) := x(t + 1), t ∈ Z, the variables x(t) ∈ X̄ ⊂ Rn, u(t) ∈U ⊂ Rm, z(t) ∈ Z ⊂ Rm, and the state
transition map Φ̄ : X̄ ×U → X̄ is supposed to be analytic. Both X̄ and U are assumed to be open sets.
The variable z(t) ∈ Rm is chosen so that the extended map Φ = [Φ̄T ,χT ]T has the global analytic inverse
x=Λ(x〈1〉,z), u= λ (x〈1〉,z), defined on its image Φ(X̄×U). System (1) defines the inversive difference field
K of meromorphic functions of a finite number of variables from the set C = {x,u〈k〉,z〈−l〉, k ≥ 0, l ≥ 1}.
Here u〈k〉 denotes the kth-order forward shift of x and z〈−l〉 the lth-order backward shift of z. The 1st-order
forward shift of variable x is defined by equations (1) and the 1st-order backward shifts by

x〈−1〉 = Λ(x,z〈−1〉), u〈−1〉 = λ (x,z〈−1〉). (2)

The higher-order shifts are defined recursively, see more in [5]. The backward shift can be extended to the
vector fields1

Ξ =
n

∑
i=1

ξi
∂

∂xi
+

m

∑
j=1

η j
∂

∂u j
(3)

by

Ξ
〈−1〉 =

n

∑
i=1

ai
∂

∂xi
+

m

∑
j=1

b j
∂

∂ z〈−1〉
j

, (4)

where

ai =
〈

dx〈1〉i ,Ξ
〉〈−1〉

, b j =
〈
dχ j,Ξ

〉〈−1〉
. (5)

1 Note that in [5] more general formulae are given for forward and backward shifts of vector fields, having also the components
in directions ∂/∂u〈k〉, k > 0, and ∂/∂ z〈−l〉, l > 0.
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The projection of Ξ〈−1〉 is the vector field

Ξ
〈−1〉π =

n

∑
i=1

ai
∂

∂xi
. (6)

Note that the backward shift and projection operators do not commute.

Definition 1. The relative degree of a function ϕ(x) is the smallest positive integer r such that

∂ϕ〈l〉

∂u
≡ 0, ∀ l = 0, ...,r−1,

∂ϕ〈r〉

∂u
6≡ 0. (7)

Definition 2. [3] A regular static state feedback is an analytic map α : X̄×V →U

u = α(x,v) (8)

such that rankK (∂α/∂v) = m, and V ∈ Rm.

Definition 3. System (1) is said to be (generically) linearizable by a regular static state feedback if there
exists a state diffeomorphism X = Ψ(x) and a regular static state feedback u = α(x,v), such that in the new
coordinates one has m (i = 1, ...,m) independent chains of forward shifts

X 〈1〉i,1 = Xi,2, ..., X 〈1〉i,ri−1 = Xi,ri , X 〈1〉i,ri
= vi, (9)

where ri is the relative degree of Xi,1. The form (9) is called the Brunovsky form.

The standard linearizability conditions are formulated in terms of the non-decreasing stabilizing se-
quence of distributions Dk ⊆ spanK {∂/∂u,∂/∂ z〈−1〉}, defined as

Dk = spanK

{
∂

∂ z〈−1〉 ,

(
∂

∂u

)〈−l〉π
, l = 1, ...k

}
, (10)

where (∂/∂u)〈−l〉π denotes the projection of the lth-order backward shift of the vector field ∂/∂u. Denote
by k? the smallest integer such that D1 ⊂ ... ⊂ Dk?−1 ⊂ Dk? = Dk?+1. Note that k? ≤ n, because all Dk’s
belong to the (n+m)-dimensional space and, according to (10), dimK Dk > m for all k > 0. Consequently,
the maximal number of independent Dk’s cannot be greater than n, and k? is the first step, at which the
sequence Dk stabilizes.

Definition 4. A distribution D is called involutive if for two arbitrary vector fields Ξ1,Ξ2 ∈D also
[Ξ1,Ξ2] ∈D .

Theorem 5. [5] System (1) is (generically) static state feedback linearizable if and only if
(i) all Dk, k > 0, are involutive and
(ii) dimK Dk? = n+m.

Observe that the direct application of Theorem 5 requires the means to compute explicitly both the
backward and forward shifts, see (4), (5).
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3. DISCRETE-TIME MODELS OF CONTINUOUS-TIME CONTROL SYSTEMS

In most cases it is impossible to find the exact discrete-time model of a nonlinear continuous-time system
[14]. In general, the discretization of continuous-time state equations

ẋ = f (x,u) (11)

requires approximation. The simplest approach is to use the explicit Euler discretization scheme which
converts equations (11) into the form

x〈1〉 = x+ f (x,u)T. (12)

A disadvantage of this scheme is the small region of numerical stability. In order to increase this region, the
implicit (alternatively called the backward) Euler discretization scheme is preferred:

x〈1〉 = x+ f (x〈1〉,u)T. (13)

The scheme (13) also allows one to use larger sampling times T [6]. In order to obtain the system description
as in (1), one has to solve equations (13) with respect to x〈1〉. Even in case of a relatively simple form of f
it may lead to very complicated equations in terms of the explicit forward shift operator, as shown in [6].
Therefore, in such cases it is preferable to use the system description in terms of the explicit backward shift
operator, obtained from (13) simply as

x〈−1〉 = x− f (x,z〈−1〉)T =: Λ(x,z〈−1〉), z〈−1〉 = u〈−1〉. (14)

4. THE MAIN RESULT

The goal of this paper is to introduce an alternative method to check feedback linearizability and to define
the coordinate transformation for the static state feedback linearization that relies only on the backward
shift operator. The idea that allows us to avoid the application of the forward shift is based on the concept
of distribution invariants, in particular on Theorem 6 below.

Theorem 6. [5] The following statements are equivalent:
(i) a function ϕk(x) is an invariant of Dk, i.e.

〈dϕk,Ξ〉 ≡ 0, ∀Ξ ∈Dk, (15)

(ii) the relative degree of ϕk(x) is at least k+1.

4.1. Computation of distributions ∆k

In order to check the static state feedback linearizability, we introduce, instead of Dk, the non-decreasing
sequence of distributions ∆k, k > 0. The reason is that the computation of ∆k requires only the knowledge of
the backward shift equations. Note that the computation of the basis vector fields (∂/∂u)〈−l〉π of Dk’s in (10)
requires the knowledge of both the forward and backward shift equations, see (4) and (5). Or, alternatively,
one can compute Dk with the help of the forward shift equations and the inverse of the corresponding Jacobi
matrix, whose columns (interpreted as vector fields) can be used for computations of (∂/∂u)〈−l〉π . Lemma
8 below shows that if ∆k is involutive, then ∆k and Dk coincide.

In this subsection we present Algorithm 1 to compute, step by step, the distributions ∆k, k > 0, that
rely only on the backward shift operator. Each step of the algorithm uses the invariants of the distribution,
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obtained at the previous step. These invariants will be shifted backward and then, with the help of these
backward shifts the basis vector fields of the next distribution are defined.

Denote by Ik = ϕk(x) a complete set of independent functions, whose relative degree is at least k+ 1.
Denote the number of independent invariants Ik by nk. Note that in Algorithm 1 below we do not compute
directly the forward shifts of the functions ϕk(x) but just use the fact that they exist in principle, and the fact
that the relative degree of ϕk(x) is at least k+1.
Algorithm 1. Computation of distributions ∆k and their invariants.
Step 0. I0 := x, φ0 := Λ(x,z〈−1〉), n0 = n.
Step k (k ≥ 1). Suppose that we have a complete set of independent functions Ik−1 = ϕk−1(x) with relative
degrees being at least k. This step (i) computes their backward shifts I〈−1〉

k−1 , (ii) defines with their help the
next distribution ∆k, and (iii) finds its invariants Ik.

Define the map φk−1 = I〈−1〉
k−1 : (X̄×Rm)→ Rnk−1 , based on backward shift equations (2) as follows:

φk−1(x,z〈−1〉) := ϕk−1(Λ(x,z〈−1〉)). (16)

Introduce the kernel of the Jacobi matrix

T φk−1 =
∂φk−1(x,z〈−1〉)

∂ (x,z〈−1〉)
(17)

as a distribution

KerT φk−1 = spanK {Ξk−1} : 〈dφk−1,Ξk−1〉 ≡ 0. (18)

Introduce the distribution

∆k = KerT φk−1∪ spanK

{
∂

∂ z〈−1〉

}
. (19)

Find all independent invariants Ik = ϕk(x) of ∆k as the functions satisfying the conditions

〈dIk,Ξk−1〉 ≡ 0,
〈

dIk,
∂

∂ z〈−1〉

〉
≡ 0. (20)

Due to Lemma 7 below, the set Ik is also a complete set of all independent functions with the relative degree
at least k+1:

∂ I〈l〉k
∂u
≡ 0, ∀ l = 0, ...,k. (21)

If ∆k = ∆k−1, the algorithm stops.

Lemma 7. The following statements are equivalent:
(i) the elements of Ik are the invariants of ∆k, i.e. (20) holds,
(ii) the elements of Ik have the relative degree at least k+1, i.e. (21) holds.

Proof. Show first (20)⇒ (21). Recall again that although we use in the proof the forward shifts I〈1〉k of Ik,
we actually do not compute them with the help of equations (1), which we do not know. We only use the
fact that I〈1〉k exists.

According to (18) and (20), all the elements of Ik are the invariants of KerT φk−1. Then, due to (16)
and (18), dIk ∈ spanK {dI〈−1〉

k−1 }. Shifting the last relation forward yields dI〈1〉k ∈ spanK {dIk−1}. Because the

relative degree of Ik−1 is at least k due to its definition, also I〈1〉k has the relative degree at least k. That is, the
relative degree of Ik is really at least k+1 and (21) holds.

Next show (21) ⇒ (20). If the relative degree of Ik is at least k+ 1, then its forward shift I〈1〉k has the
relative degree at least k and, according to the definition of Ik−1, dI〈1〉k ∈ spanK {dIk−1}. Shifting this formula
back gives dIk ∈ spanK {dI〈−1〉

k−1 }. From (16) and (18) it follows then 〈dIk,Ξk−1〉 ≡ 0 for all Ξk−1 ∈KerT φk−1

and, because Ik depends only on x, also 〈dIk,∂/∂ z〈−1〉〉 ≡ 0. This means that (20) really holds. �
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4.2. Linearizability conditions

In this subsection we will reformulate the necessary and sufficient linearizability conditions in terms of
distributions ∆k. We first examine the relationship between the distributions ∆k as in (19) and Dk as in (10).
Denote by D̄k and ∆̄k the involutive closures of Dk and ∆k, respectively.

Lemma 8. ∆̄k = D̄k, k = 1, ...,k?−1.

Proof. According to Theorem 6, the set of functions Ik is a complete set of independent invariants of Dk.
Due to Lemma 7, Ik is also a complete set of independent invariants of ∆k. As shown in [5], the invariants
of a distribution are also the invariants of its involutive closure and vice versa. Consequently, ∆̄k and D̄k
have the same set of independent invariants, i.e. they are both the annihilators of an integrable codistribution
spanK {dIk} and, therefore, are equal. �

Theorem 9. System (2) is static state feedback linearizable if and only if
(i) all ∆k, k > 0, are involutive and
(ii) there exists an index k? such that dimK ∆k? = n+m.

Proof. Follows directly fromTheorem 5 and Lemma 8. �

4.3. State transformation

Suppose that the system, described in terms of backward shift equations (2), is static state feedback lineariz-
able, i.e. the conditions of Theorem 9 hold. Then with the help of Algorithm 2 the linear chains of backward
shifts can be constructed, analogous to the Brunovsky chains (9).
Algorithm 2. Finding the state transformation.

Initialization. Consider the distributions ∆k, k = 1, ...,k?, computed by Algorithm 1, whereby dimK ∆k? =
n+m. Then ∆k?−1 is the largest distribution, which has non-zero invariants. According to Lemma 7, the
relative degree of these invariants is k?, being the highest ri in (9).
Step 1. Find (a) the variables Xi1,1 in (9), having relative degree k?, and (b) their forward shifts X 〈1〉i1,1 = Xi1,2.

(a) Using (20), compute the independent invariants Ik?−1 = ϕk?−1(x) of ∆k?−1. Their number is nk?−1, all
with relative degree k?. Take

Xi1,1 := Ik?−1,i1 = ϕk?−1,i1(x), i1 = 1, ...,nk?−1. (22)

(b) Since the forward shift equations are unknown, one cannot compute the shifts directly, but has to
use an indirect method. The relative degree of Xi1,2 is obviously k?−1. Therefore one can express them in
terms of invariants Ik?−2 = ϕk?−2(x) of ∆k?−2, which can be computed via (20) while performing Algorithm
1. So, there exist functions ψk?−1,i1 such that Xi1,2 = ψk?−1,i1(Ik?−2) and one has to find these functions. For
this purpose shift the last relation back by one step:

Xi1,1 = ψk?−1,i1(I
〈−1〉
k?−2), (23)

and compute the backward shifts of Ik?−2 = ϕk?−2(x) using (2):

I〈−1〉
k?−2 = ϕk?−2(Λ(x,z〈−1〉)). (24)

Now, in order to express Xi1,1 in terms of I〈−1〉
k?−2, eliminate from the system of equations (22) and (24) the

variables z〈−1〉 and x. This yields nk?−1 implicit functions

F1(Xi1,1, I
〈−1〉
k?−2) = 0. (25)
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The solution of (25) with respect to Xi1,1 gives functions in (23) in the explicit form. Observe that solving
(25) is, in general, much simpler than solving equations (2) to obtain forward shift equations (1). In the first
case one has nk?−1 equations, in the second case n+m equations. Next, shift (23) forward by one step to get
Xi1,2 = ψk?−1,i1(Ik?−2). To express Xi1,2 in terms of x, substitute Ik?−2 = ϕk?−2(x) into the last formula

Xi1,2 = ψk?−1,i1(ϕk?−2(x)). (26)

Check if the number of coordinates obtained at this step equals n. If yes, then stop the algorithm, if no, go
to the next step.
Step 2.2 Find (a) the variables Xi2,1 having relative degrees k?− 1 (if they exist), and (b) X 〈1〉i1,2 = Xi1,3,

X 〈1〉i2,1 = Xi2,2.
(a) Using (20), one can compute the independent invariants Ik?−2 = ϕk?−2(x) of ∆k?−2. Their number is

nk?−2, the relative degrees are at least k?−1. Because the set of invariants is not uniquely defined, one can
express them as follows: first 2nk?−1 invariants Xi1,1 from (22) and Xi1,2 from (26) and, if 2nk?−1 < nk?−2,
then add nk?−2−2nk?−1 additional independent invariants

Xi2,1 = Ik?−2,i2 = ϕk?−2,i2(x), (27)

where i2 = nk?−1 +1, ...,nk?−2. That is, the independent invariants of ∆k?−2 are

Ik?−2 = {Xi1,1,Xi1,2,Xi2,1}. (28)

(b) Because the relative degree of Xi1,3 as well as of Xi2,2 is k?− 2, one can express them in terms of
the invariants Ik?−3 = ϕk?−3(x) of ∆k?−3. That is, there exist the functions ψk?−2,i1 and ψk?−2,i2 such that
Xi1,3 = ψk?−2,i1(Ik?−3) and Xi2,2 = ψk?−2,i2(Ik?−3). In order to compute Xi1,3 and Xi2,2, one has to find these
functions. For this purpose shift the last relations back by one step:

Xi1,2 = ψk?−2,i1(I
〈−1〉
k?−3), Xi2,1 = ψk?−2,i2(I

〈−1〉
k?−3), (29)

and compute the backward shifts of Ik?−3 = ϕk?−3(x) using (2):

I〈1〉k?−3 = ϕk?−3(Λ(x,z〈−1〉)). (30)

Now, in order to express Xi1,2 and Xi2,1 in terms of I〈1〉k?−3, eliminate from the system of equations (26), (27),
and (30) the variables z〈−1〉 and x, resulting in nk?−1 +nk?−2 implicit functions

F2(Xi1,2,Xi2,1, I
〈−1〉
k?−3) = 0. (31)

After solving (31) with respect to Xi1,2 and Xi2,1 we get the functions (29) in the explicit form. Next shift
(29) forward by one step to get Xi1,3 = ψk?−2,i1(Ik?−3) and Xi2,2 = ψk?−2,i2(Ik?−3). To express Xi1,3 and Xi2,2
in terms of x, substitute Ik?−3 = ϕk?−3(x) into the last formulae:

Xi1,3 = ψk?−2,i1(ϕk?−3(x)), Xi2,2 = ψk?−2,i2(ϕk?−3(x)). (32)

Check if the number of coordinates obtained at this step equals n. If yes, then stop the algorithm, if no, go
to the next step.
Step k. Find (a) the variables Xik,1 in (9) with relative degree k?−k+1 (if they exist), and (b) X 〈1〉i1,k = Xi1,k+1,

X 〈1〉i2,k−1 = Xi2,k, ..., X 〈1〉ik,1 = Xik,2.

2 Although Step 2 is a special case of Step k for k = 2, we decided to add it for readability and better understanding of Example.
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(a) Using (20), one computes the independent invariants Ik?−k = ϕk?−k(x) of ∆k?−k as follows.
• Xi1,1 and their forward shifts up to order k−1, i.e. altogether knk−1 invariants:

Xi1,1 = ϕk?−1,i1(x), Xi1,2 = ψk?−1,i1(ϕk?−2(x)), ..., Xi1,k = ψk?−k+1,i1(ϕk?−k(x)); (33)

• Xi2,1 and their forward shifts up to order k−2, i.e. altogether (k−1)nk?−2 invariants:

Xi2,1 = ϕk?−2,i2(x), Xi2,2 = ψk?−2,i2(ϕk?−3(x)), ..., Xi2,k−1 = ψk?−k+2,i2(ϕk?−k(x)); (34)

...
• Xik−1,1 and their first-order forward shifts, i.e. altogether 2nk?−k+1 invariants:

Xik−1,1 = ϕk?−k+1,ik−1(x), Xik−1,2 = ψk?−k+1,ik−1(ϕk?−k(x)). (35)

If the number of these invariants is smaller than the total number nk?−k of independent invariants of ∆k?−k,
then add nk?−k−2nk?−k+1− ...− (k−1)nk?−2− knk−1 invariants

Xik,1 = Ik?−k,ik = ϕk?−k,ik(x) (36)

in order to get a complete set of independent invariants of ∆k?−k:

Ik?−k = {Xi1,1, ...,Xi1,k,Xi2,1, ...,Xi2,k−1, ...,Xik,1}. (37)

(b) Because the relative degree of Xi1,k+1,...,Xik,2 is k?− k, one can express them in terms of invariants
Ik?−k−1 = ϕk?−k−1(x) of ∆k?−k−1. That is, there exist the functions ψk?−k,i1 ,...,ψk?−k,ik such that Xi1,k+1 =
ψk?−k,i1(Ik?−k−1),...,Xik,2 = ψk?−k,ik(Ik?−k−1). In order to compute Xi1,k+1,...,Xik,2, one has to find these func-
tions. For this purpose shift the last relations back by one step:

Xi1,k = ψk?−k,i1(I
〈−1〉
k?−k−1), ..., Xik,1 = ψk?−k,ik(I

〈−1〉
k?−k−1), (38)

and compute the backward shifts of Ik?−k−1 = ϕk?−k−1(x) using (2):

I〈−1〉
k?−k−1 = ϕk?−k−1(Λ(x,z〈−1〉)). (39)

Now, in order to express Xi1,k+1,...,Xik,2 in terms of I〈−1〉
k?−k−1, eliminate from the system of equations (33)–(36),

and (39) the variables x and z〈−1〉, resulting in nk?−1 + ...+nk?−k independent implicit functions

Fk(Xi1,k+1, ...,Xik,2, I
〈−1〉
k?−k−1) = 0. (40)

After solving (40) with respect to Xi1,k+1,...,Xik,2 we get the functions in (38) in the explicit form. Next shift
the relations (38) forward by one step, writing Xi1,k+1 = ψk?−k,i1(Ik?−k−1),...,Xik,2 = ψk?−k,ik(Ik?−k−1). To
express Xi1,k+1,...,Xik,2 in terms of x, substitute Ik?−k−1 = ϕk?−k−1(x) into the last relations:

Xi1,k+1 = ψk?−k,i1(ϕk?−k−1(x)),
... (41)

Xik,2 = ψk?−k,ik(ϕk?−k−1(x)).

The algorithm stops when dimK X = n. As a result we obtain the coordinate transformation

X = Ψ(x). (42)
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4.4. Static state feedback

In this subsection we will show how to find the static state feedback of the form (8), which together with
the state transformation (42) allows us to represent the state equations in the Brunovsky form (9). Find the
inverse of (42)

x = Ψ
−1(X). (43)

Shift the relation (42) back according to the system dynamics (14):

X 〈−1〉 = Ψ(Λ(x,u〈−1〉)) (44)

and replace in (44) the variables x via X using (43). This results in the backward shift equations in the new
coordinates X :

X 〈−1〉 = Ψ(X ,u〈−1〉) := Ψ(Λ(Ψ−1(X),u〈−1〉)), (45)

which have, due to the definition of X , the following structure:

X 〈−1〉
i,1 = Ψi,1(X ,u〈−1〉), i = 1, ...,m, X 〈−1〉

i,l = Xi,l−1, l = 2, ...,ri. (46)

Shift (46) “formally” forward, obtaining

Xi,1 = Ψi,1(X 〈1〉,u), i = 1, ...,m, (47)

Xi,l = X 〈1〉i,l−1, l = 2, ...,ri. (48)

Observe that the last ri−1 equations of each chain above can be simply rewritten in the form

X 〈1〉i,l = Xi,l+1, i = 1, ...,m, l = 1, ...,ri−1 (49)

by changing the order of equations (47) and (48). In order to get the last equations X 〈1〉i,ri
= vi of each chain

in (9), one has to apply the feedback. To find the feedback, we replace in (47), according to (49), all X 〈1〉i,l ,

l = 1, ...,ri− 1, by Xi,l+1, and all X 〈1〉i,ri
by vi. Solving the system of algebraic equations obtained that way

with respect to u results in the feedback.

4.5. The independence of coordinate transformation and feedback on the choice of z

In this subsection we will prove that the coordinate transformation X =Ψ(x) and feedback (8) do not depend
on the choice of z. The proof consists in two parts.

Lemma 10. The coordinates Xi,1 = Ψi,1(x), i = 1, ...,m, do not depend on the choice of z.

Proof. Using Algorithms 1 and 2, one finds Xi,1, i = 1, ...,m, as the appropriately chosen invariants of
(involutive) distributions ∆k, where k+1 is the relative degree of respective Xi,1. We will show below that if
∆k is involutive, then its invariants Ik do not depend on the choice of z.

Suppose that the invariants Ik−1 do not depend on the choice of z (for k = 1 this is true, because I0 = x),
and show that if ∆k is involutive, then also Ik does not depend on the choice of z. According to the definition
of the projection of a vector field (6), one can rewrite the distribution ∆k in (19) as

∆k = spanK

{
Ξ

π
k−1,

∂

∂ z〈−1〉

}
, (50)
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where Ξk−1 are the basis vector fields of KerT φk−1, see (18). Therefore,

∆
π
k = spanK {Ξπ

k−1}. (51)

If ∆k is involutive (being necessary for the existence of the coordinate transformation X =Ψ(x)), due to Def-
inition 4 and (50) the following conditions must be satisfied: 1) [Ξπ

k−1,1,Ξ
π
k−1,2]∈ ∆k, 2) [∂/∂ z〈−1〉,Ξπ

k−1,2]∈
∆k for all Ξπ

k−1,1,Ξ
π
k−1,2 and ∂/∂ z〈−1〉. As by definition Ξπ

k−1,1,Ξ
π
k−1,2 ∈ spanK {∂/∂x}, it follows from 1)

and 2) that 3) [Ξπ
k−1,1,Ξ

π
k−1,2] ∈ spanK {∂/∂x}, 4) [∂/∂ z〈−1〉,Ξπ

k−1,2] ∈ spanK {∂/∂x}. Due to 1) and 3),
[Ξπ

k−1,1,Ξ
π
k−1,2] ∈ ∆π

k . Consequently, if ∆k is involutive, then ∆π
k is also involutive and Ik can be defined as

the invariants of an involutive distribution ∆π
k . This means that they can be defined as a complete set of

independent functions Ik = ϕk(x) such that

〈dϕk, Ξ̃〉 ≡ 0, ∀ Ξ̃ ∈ ∆
π
k . (52)

On the other hand, from 2) and 4) it follows that [∂/∂ z〈−1〉,Ξπ
k−1] ∈ ∆π

k for ∂/∂ z〈−1〉 and Ξπ
k−1, i.e., the Lie

derivative with respect to ∂/∂ z〈−1〉 does not affect ∆π
k . Therefore one can define the basis ∆π

k = spanK {Ξ̃}
such that the components of Ξ̃ do not depend on z〈−1〉. Because the single criterion for the choice of Ik is
(52), Ik (and also Xi,1) do not depend on the choice of z. �

Corollary 11. The coordinates Xi,2, ...,Xi,ri and the feedback (8) do not depend on the choice of z〈−1〉.

Proof. Take into account that Xi,2, ...,Xi,ri and vi are obtained via forward shifting of Xi,1. According to
Lemma 10, the choice of Xi,1 does not depend on the choice of z and also the forward shift equations
x〈1〉 = Φ̄(x,u) do not contain z; then also Xi,2, ...,Xi,ri and vi do not depend on the choice of z. Then the
feedback (8) does not depend on z either. �

5. EXAMPLE

Consider the state equations of a hydraulic press with the vertical cylinder, described in [6] as

ẋ1 = x2,

ẋ2 = (S(x3− x4)−Mg−µx2)/M,

ẋ3 =
β (u1− x2)

l0 + x1
, (53)

ẋ4 =
β (x2−u2)

l− l0− x1
,

where x1 and x2 are, respectively, the position and velocity of the piston, and x3 and x4 are the pressures
under and above the piston, respectively. The system constants have the following meaning: M is the mass
of the piston, S is the effective piston area, µ is the damping coefficient, l0 is the height of the chamber under
the piston, l is the total length of the cylinder, and β is the isothermal bulk modulus of the oil. The inputs
ui, i = 1,2, are defined as

ui =


K1
S
√

ps− xi+2|Ui| if Ui ≥ 0

K2
S
√

xi+2− pt |Ui| if Ui < 0
,
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where K1,K2 ∈R+, ps and pt are the supply and tank pressures, respectively, and U1 and U2 are the positions
of valves at the supply and the tank, respectively. The implicit Euler discretization of (53) has the form

x〈1〉1 = x1 + x〈1〉2 T,

x〈1〉2 = x2 +
(S(x〈1〉3 − x〈1〉4 )−Mg−µx〈1〉2 )T

M
,

x〈1〉3 = x3 +
β (u1− x〈1〉2 )T

l0 + x〈1〉1

, (54)

x〈1〉4 = x4 +
β (x〈1〉2 −u2)T

l− l0− x〈1〉1

,

where T is the sampling time. To find the system description (1) requires solving equations (54) with respect
to x〈1〉. This leads to extremely complicated equations [6]. However, one can easily convert equations (54)
into the system description (2):

x〈−1〉
1 = x1− x2T,

x〈−1〉
2 = x2− (S(x3− x4)−Mg−µx2)T/M,

x〈−1〉
3 = x3−

β (z〈−1〉
1− x2)T

l0 + x1
, (55)

x〈−1〉
4 = x4−

β (x2− z〈−1〉
2)T

l− l0− x1
,

taking z1 = u1, z2 = u2. Equations (55) define the map φ0 : X×Z→ X, whose Jacobi matrix reads

T φ0 =



1 −T 0 0 0 0

0 1+
µT
M

−ST
M

ST
M

0 0

(−x2 + z〈−1〉
1 )βT

(l0 + x1)2 − βT
l0 + x1

1 0
βT

l0 + x1
0

(x2− z〈−1〉
2 )βT

(l0− l− x1)2 − βT
l0− l− x1

0 1 0
βT

l0− l− x1


. (56)

In order to check the linearizability property of the discrete-time model (55), find the distributions ∆k,
k = 1, ...,k?, with the help of Algorithm 1.
Step 0. Take I0 = x, n0 = 4; the map φ0 is given by equations (55).
Step 1. Find ∆1 as described in (18) and (19). After simplification one gets

∆1 = spanK

{
T

∂

∂x1
− ∂

∂x2
+

M−µT
ST

∂

∂x3
,

∂

∂x3
+

∂

∂x4
,

∂

∂ z〈−1〉
1

,
∂

∂ z〈−1〉
2

}
,

which is an involutive distribution. Because dimK ∆1 = 4 = n + m− 2, the number of its independent
invariants is 2. One can easily check that these invariants are

I1,1=(x3−x4)ST−x2(M−µT ), I1,2=(x1−x2T )ST. (57)

According to Lemma 7, their relative degree is at least 2.
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Step 2. Find ∆2. Shift the invariants (57) back as in (16), to obtain the map φ1:

I〈−1〉
1,1 = φ1,1 :=−(µT −M)

(
x2−

((x3− x4)S−Mg−µx2)T
M

)
+

(
x3 +

(x2− z〈−1〉
1 )βT

l0 + x1

)
ST

−

(
x4−

(x2− z〈−1〉
2 )βT

l− l0− x1

)
ST,

I〈−1〉
1,2 = φ1,2 := (x1− x2T )ST −

(
x2−

((x3− x4)S−Mg−µx2)T
M

)
ST 2.

(58)

The Jacobi matrix of φ1 reads

T φ1 =


−

(
x2− z〈−1〉

1

)
βST 2

(l0 + x1)2 −

(
z〈−1〉

2 − x2

)
βST 2

(l− l0− x1)2
βST 2

l0 + x1
+

βST 2

l− l0− x1
− (µT +M)

(
1+

µT
M

)
|

|

ST −
(

2+
µT
M

)
ST 2 |

| (µT +2M)ST
M

−(µT +2M)ST
M

− βST 2

l0 + x1
− βST 2

l− l0− x1
|

| S2T 3

M
−S2T 3

M
0 0

 .

Compute ∆2, using (18) and (19):

∆2=spanK

{
∂

∂x3
+

∂

∂x4
,ST

∂

∂x2
+(µT +2M)

∂

∂x3
,ST 2 ∂

∂x1
−M

∂

∂x3
,

∂

∂ z〈−1〉
1

,
∂

∂ z〈−1〉
2

}
, (59)

which is again involutive. Note that ∆2 has one independent invariant

I2,1 = x1−2x2T +
((x3− x4)S−Mg−µx2)T 2

M

as the single independent function with relative degree 3.
Step 3. Finally, one gets

∆3 = spanK

{
∂

∂x
,

∂

∂ z〈−1〉

}
.

Because dimK ∆3 = 6 = n+m, the algorithm stops here. Due to involutivity of ∆1, ∆2, and ∆3, system (31)
is, according to Theorem 9, static state feedback linearizable.

Find next, with the help of Algorithm 2, the state transformation X = Ψ(x). We start with ∆2. Note that
∆2 is the largest distribution that has non-zero invariants. Therefore, the relative degree of its single invariant
I2,1 is equal to 3 (and not at least 3). So, i2 = 1. Recall that n2 = 1 is the number of independent invariants
of ∆2, and i2 = 1 is the number of the Brunovsky chains, whose first elements are the invariants of ∆2.
Step 1. (a) Define, according to (22),

X1,1= I2,1=x1−2x2T+
((x3− x4)S−Mg−µx2)T 2

M
. (60)
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(b) Compute, by (26), X1,2 = I〈1〉2,1 . Since the relative degree of X1,2 is 2, one can express it in terms of

the invariants I1 only. So there must exist a function ψ2,1 such that X1,1 = ψ2,1(I
〈−1〉
1 ), see (23). To find

this function, combine a system of equations from (58) and (60) and eliminate from these z〈−1〉 and x to get
X1,1 = I〈−1〉

1,2 /(ST ). Shifting this relation forward gives X1,2 = I1,2/(ST ). Taking I1,2 from (57), we obtain,
according to (26),

X1,2 = I〈1〉2,1 = x1− x2T.

Step 2. (a) Because ∆1 is involutive, the number of its independent invariants is n+m− dimK ∆2 = 2. In
step 1 we obtained already two independent invariants X1,1 and X1,2 and therefore, n1 = 0.

(b) Find the forward shift X1,3 of X1,2. From (55) one can easily see that X1,2 = x〈−1〉
1 and therefore

X1,3 = x1.
Step 3. At this step we define a complete set of functions with relative degree at least 1, denoted by I0. In
previous steps we got already 3 invariants, X1,1, X1,2, and X1,3. In order to complete the set, define the 4th
one, for instance one can take X2,1 = I0,4 = x4. Define the state transformation (where X1,1, X1,2, and X1,3
mean the positions of the piston, and X2,1 means the pressure above the piston):

X1,1 = x1−2x2T −gT 2 +
((x3− x4)S−µx2)T 2

M
,

X1,2 = x1− x2T, X1,3 = x1, X2,1 = x4,

(61)

and find its inverse

x1 = X1,3, x2 =
X1,3−X1,2

T
,

x3 =
1

ST 2

[
M (X1,3−2X1,2 +X1,1)+µT (X1,3−X1,2)+(X2,1S+Mg)T 2],

x4 = X2,1.

(62)

Shifting (61) back with the help of (55) and substituting in the obtained equations x by X using (62), we get
the backward shift equations (46) in the new coordinates:

X 〈−1〉
1,1 =

u〈−1〉
2 βST 3 +(X1,2−X1,3)βST 2

M (l0− l−X1,3)
−

u〈−1〉
1 βST 3 +(X1,2−X1,3)βST 2

M (l0 +X1,3)

+
µT
M

(X1,3−2X1,2 +X1,1)+(X1,3−3X1,2 +3X1,1) ,

X 〈−1〉
1,2 = X1,1, X 〈−1〉

1,3 = X1,2,

X 〈−1〉
2,1 = X2,1 +

(X1,3−X1,2)β −u〈−1〉
2 βT

l0− l−X1,3
.

(63)

To convert the above equations into the Brunovsky form

X 〈1〉1,1 = X1,2, X 〈1〉1,2 = X1,3, X 〈1〉1,3 = v1, X 〈1〉2,1 = v2, (64)

shift first equations (63) “formally” forward, substituting X 〈−1〉, X , and u〈−1〉 simply by X , X 〈1〉, and u,
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respectively, to get

X1,1 =
u2βST 3 +

(
X 〈1〉1,2 −X 〈1〉1,3

)
βST 2

M
(

l0− l−X 〈1〉1,3

) −
u1βST 3 +

(
X 〈1〉1,2 −X 〈1〉1,3

)
βST 2

M
(

l0 +X 〈1〉1,3

)
+

µT
M

(
X 〈1〉1,3 −2X 〈1〉1,2 +X 〈1〉1,1

)
+
(

X 〈1〉1,3 −3X 〈1〉1,2 +3X 〈1〉1,1

)
,

X1,2 = X 〈1〉1,1 , X1,3 = X 〈1〉1,2 ,

X2,1 = X 〈1〉2,1 +

(
X 〈1〉1,3 −X 〈1〉1,2

)
β −u2βT

l0− l−X 〈1〉1,3

.

(65)

Observe that the second and the third equations of (65) give already the first and the second equations in
(64), but to convert the first and the fourth equations of (65) into the Brunovsky form, one needs to use the
feedback of the form (8). To find the feedback, (1) replace X 〈1〉1,1 by X1,2 and X 〈1〉1,2 by X1,3 in the first and the
fourth equations of (65), and (2) because our aim is to get the third and fourth equations of (64), replace
X 〈1〉1,3 by v1, and X 〈1〉2,1 by v2:

X1,1 =
u2βST 3 +(X1,3− v1)βST 2

M (l0− l− v1)
− u1βST 3 +(X1,3− v1)βST 2

M (l0 + v1)

+
µT
M

(v1−2X1,3 +X1,2)+(v1−3X1,3 +3X1,2) ,

X2,1 = v2 +
(v1−X1,3)β −u2βT

l0− l− v1
.

Solving the above equations with respect to u gives the static state feedback

u1 =
1

βT
[(v2−X2,1)(l0 + v1)+(v1−X1,3)β ]+

µ

βST 2 (v1−2X1,3 +X1,2)(l0 + v1)

+
M(l0 + v1)

βST 3 (v1−3X1,3 +3X1,2−X1,1) ,

u2 =
1

βT
[(v2−X2,1)(l0− l− v1)+β (v1−X1,3)] .

6. CONCLUSIONS

The paper provides an alternative computational method for solving the static state feedback linearization
problem for a discrete-time control system. The proposed method is built upon the results of [5], based on
the vector fields. However, instead of distributions in [5], another but related sequence of distributions is
suggested, which can easily be computed with the help of backward shift equations only, while the compu-
tation of the related distributions in [5] requires both forward and backward shift equations. This fact makes
the method especially useful for a certain subclass of discrete-time systems, obtained from the implicit Eu-
ler discretization of continuous-time systems. The idea that allows us to avoid forward shifts is to use the
concepts of distribution invariants and their relative degrees in computations. As an example, the implicit
Euler discretization of hydraulic press equations is considered.

Similar results can be obtained for the case when only the forward shift equations are available. More-
over, the approach can also be used to solve the partial feedback linearization problem, either using only
backward shifts or only forward shifts, and possibly to solve the problem of realization of the input-output
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equations in the state space form. Observe that some preliminary results in this direction have been obtained
in [15] regarding the realization problem. That is, paper [15] constructs an alternative sequence of vector
spaces of differential forms, tightly related to the sequence from paper [3] and, unlike those from [3], needs
only forward shifts in their constructions. However, compared to the approach of this paper, it allows much
less. Namely, although the subspaces of one-forms that can be computed based on the forward shifts only
are useful to check the solvability of the problem, they are of no use for constructing the state coordinates,
that is, for providing a full solution.
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Diskreetsete mittelineaarsete juhtimissüsteemide tagasisidega lineariseerimine:
arvutuslikud aspektid

Tanel Mullari ja Ülle Kotta

On esitatud alternatiivne meetod, mis võimaldab kontrollida diskreetaja mittelineaarse juhtimissüsteemi
staatilise olekutagasisidega lineariseeritavust ja leida ka lineariseerimiseks vajalikku olekuteisendust. Meeto-
di eelis varasematega võrreldes seisneb selle lihtsuses: meetod vajab ainult tagasinihkeoperaatori rakenda-
mist, samas kui varasemad nõuavad nii tagasinihke- kui ka edasinihkeoperaatori kasutamist. Meetod on eriti
sobiv diskreetaja süsteemide alamklassi korral, mis on saadud ilmutamata Euleri diskretiseerimismeetodi ra-
kendamisel pideva ajaga süsteemidele. Lineariseeritavuse tarvilike ja piisavate tingimuste kontroll põhineb
rekurrentse algoritmi abil arvutatud juhtimissüsteemiga seotud vektorväljade jaotuste involutiivsusel. Se-
ni kasutatud jaotuste asemel tuuakse sisse uued jaotused, kusjuures sarnaselt varasematele sisaldub iga
järgnev jaotus eelmises. Uued jaotused langevad kokku varasematega, kui jaotused on involutiivsed. Et uute
olekukoordinaatide arvutamisel vältida nendele edasinihkeoperaatori rakendamist, defineeritakse nende eda-
sinihked (kasutades jaotuste invariantide ja nende hilinemisjärkude mõisteid) järgmiselt. Juba olemasolevad
olekukoordinaadid on alati ühesse eelkirjeldatud järjestusse kuuluva jaotuse sõltumatud invariandid, nende
edasinihked arvutatakse kui sellele jaotusele eelneva jaotuse invariandid.

Näitena on käsitletud meetodi rakendamist hüdraulilise pressi võrrandite diskretiseerimisel saadud mu-
deli tagasisidega lineariseerimisel.


