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Abstract. Using the notion of generalized fuzzy sets, we introduce the notions of generalized fuzzy hyper-
ideals, generalized fuzzy bi-hyperideals, and generalized fuzzy normal bi-hyperideals in an ordered non-
associative and non-commutative algebraic structure, namely an ordered LA-semihypergroup, and we char-
acterize these hyperideals. We provide some results related to the images and preimages of generalized
fuzzy hyperideals in ordered LA-semihypergroups.

Key words: ordered LA-semihypergroups, generalized fuzzy sets, generalized fuzzy hyperideals.

1. INTRODUCTION

In 1934, Marty [1] gave the concept of hypergroups. The difference between a classical algebraic structure
and hyperstructures is that the composition of two elements is an element, while in an algebraic hyper-
structures, the composition of two elements is a set. A recent book on hyperstructures [2] pointed out their
applications in rough set theory, cryptography, codes, automata, probability, geometry, lattices, binary re-
lations, graphs, and hypergraphs. Another book [3] is devoted especially to the study of hyperring theory.
Bonansinga and Corsini [4], Corsini and Cristea [5], Davvaz [6] and Hasankhani [7] added many results
to hyperstructure theory. Recently, Hila and Dine [8] introduced the notion of LA-semihypergroups which
is the generalization of semigroups, semihypergroups, and LA-semigroups. Further, Yaqoob et al. [9]
studied the concept of intra-regular LA-semihypergroups with pure left identity and Yousafzai and Corsini
[10] considered some characterization problems in LA-semihypergroups. The basic idea of ordered semihy-
pergroups was introduced by Heidari and Davvaz in [11], where they used a binary relation ≤ in semihyper-
group (H,◦) such that the binary relation is a partial order and the structure (H,◦,≤) is known as ordered
semihypergroups. The ordering in LA-semihypergroup was introduced by Yaqoob and Gulistan in [12].

The most appropriate theory for dealing with uncertainties is the theory of fuzzy sets developed by Zadeh
[13]. Murali [14] defined the concept of belongingness of a fuzzy point to a fuzzy subset under a natural
equivalence on a fuzzy subset. The idea of quasi-coincidence of a fuzzy point with a fuzzy set defined in
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[15] played a vital role in the generation of some different types of fuzzy subgroups. It is worth mentioning
that Bhakat and Das [16] gave the concept of (α,β )-fuzzy subgroups by using the “belongs to” relation
∈ and “quasi coincident with” relation q between a fuzzy point and a fuzzy subgroup, and introduced the
concept of an (∈,∈ ∨q)-fuzzy subgroup, where α,β ∈ {∈,q,∈ ∨q,∈ ∧q} and α ̸=∈ ∧q. In particular, a
(∈,∈ ∨q)-fuzzy subgroup is an important and useful generalization of Rosenfeld’s fuzzy subgroup.

Fuzzy hyperideals of ordered semihypergroups were investigated by Pibaljommee et al. [17]. Further,
ordered semihypergroups in terms of fuzzy hyperideals were considered by Tang et al. [18]. Recently, Azhar
et al. [19] discussed fuzzy hyperideals of ordered LA-semihypergroups. More recently, Azhar et al. [20]
gave the concept of (∈,∈ ∨qk)-fuzzy hyperideal of an ordered LA-semihypergroup by using the ordered
fuzzy points and investigated related properties. Shabir and Mahmood [21] characterized semihypergroups
by the properties of (∈γ ,∈γ ∨qδ )-fuzzy hyperideals, see also [22,23].

In this paper, we characterize ordered LA-semihypergroups by the properties of their (∈γ ,∈γ ∨qδ )-fuzzy
hyperideals, (∈γ ,∈γ ∨qδ )-fuzzy bi-hyperideals, and (∈γ ,∈γ ∨qδ )-fuzzy normal bi-hyperideals. We show
that the set of all (∈γ ,∈γ ∨qδ )-fuzzy hyperideals becomes an ordered LA-semihypergroup. We present
results on images and preimages of (∈γ ,∈γ ∨qδ )-fuzzy hyperideals of ordered LA-semihypergroups.

2. PRELIMINARIES AND BASIC DEFINITIONS

In this section, we recall certain definitions and results needed for our study.

Definition 1. A map ◦ : H ×H → P∗(H) is called a hyperoperation or a join operation on the set H,
where H is a non-empty set and P∗(H) = P(H)\{ /0} denotes the set of all non-empty subsets of H. A
hypergroupoid is a set H together with a (binary) hyperoperation.

If A and B are two non-empty subsets of H, we denote

A◦B =
∪

a∈A,b∈B

a◦b, a◦A = {a}◦A, and a◦B = {a}◦B.

Definition 2. [8] A hypergroupoid (H,◦) is called an LA-semihypergroup if for all x,y,z ∈ H, (x ◦ y)◦ z =
(z◦ y)◦ x.

The law (x◦ y)◦ z = (z◦ y)◦ x is called a left invertive law. Every LA-semihypergroup satisfies the law
(x◦ y)◦ (z◦w) = (x◦ z)◦ (y◦w) for all x,y,z,w ∈ H. This law is known as medial law (cf. [8]).

Definition 3. [9] Let H be an LA-semihypergroup. An element e ∈ H is called
(i) left identity (resp., pure left identity) if for all a ∈ H, a ∈ e◦a (resp., a = e◦a),
(ii) right identity (resp., pure right identity) if for all a ∈ H, a ∈ a◦ e (resp., a = a◦ e),
(iii) identity (resp., pure identity) if for all a ∈ H, a ∈ e◦a∩a◦ e (resp., a = e◦a∩a◦ e).

Definition 4. [12] Let H be a non-empty set and ≤ be an ordered relation on H. The triplet (H,◦,≤) is
called an ordered LA-semihypergroup if the following conditions are satisfied:

(1) (H,◦) is an LA-semihypergroup,
(2) (H,≤) is a partially ordered set,
(3) for every a,b,c ∈ H, a ≤ b implies a◦ c ≤ b◦ c and c◦a ≤ c◦b, where a◦ c ≤ b◦ c means that for

x ∈ a◦ c there exist y ∈ b◦ c such that x ≤ y.

Definition 5. [12] If (H,◦,≤) is an ordered LA-semihypergroup and A ⊆ H, then (A] is the subset of H
defined as (A] = {t ∈ H : t ≤ a, for some a ∈ A}.

Definition 6. [12] A non-empty subset A of an ordered LA-semihypergroup (H,◦,≤) is called an LA-
subsemihypergroup of H if (A◦A]⊆ (A].
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Definition 7. [12] A non-empty subset A of an ordered LA-semihypergroup (H,◦,≤) is called a right (resp.,
left) hyperideal of H if

(1) A◦H ⊆ A (resp., H ◦A ⊆ A),
(2) for every a ∈ H, b ∈ A and a ≤ b implies a ∈ A.

If A is both right hyperideal and left hyperideal of H, then A is called a hyperideal (or two-sided hyper-
ideal) of H.

Definition 8. [19] Let x ∈ H, then Ax = {(y,z) ∈ H ◦H : x ≤ y◦ z} . Let f and g be two fuzzy subsets of an
ordered LA-semihypergroup H, then f ∗g is defined as

( f ∗g)(x) =

{ ∨
(y,z)∈Ax

{ f (y)∧g(z)} if x ≤ y◦ z , for some y,z ∈ H

0 otherwise.

Let F (H) denote the set of all fuzzy subsets of an ordered LA-semihypergroup.

Definition 9. [19] Let (H,◦,≤) be an ordered LA-semihypergroup. A fuzzy subset f : H → [0,1] is called
a fuzzy LA-subsemihypergroup of H if the following assertions are satisfied:

(i)
∧

z≤a◦b
f (z)≥ min{ f (a) , f (b)},

(ii) if a ≤ b implies f (a)≥ f (b), for every a,b ∈ H.

Definition 10. [19] Let (H,◦,≤) be an ordered LA-semihypergroup. A fuzzy subset f : H → [0,1] is called
a fuzzy right (resp., left) hyperideal of H if

(1)
∧

z≤a◦b
f (z)≥ f (a) (resp.,

∧
z≤a◦b

f (z)≥ f (b) ),

(2) a ≤ b implies f (a)≥ f (b), for every a,b ∈ H.

If f is both a fuzzy right hyperideal and a fuzzy left hyperideal of H, then f is called a fuzzy hyperideal
of H.

Proposition 1. [19] Let H be an ordered LA-semihypergroup. Then the set (F (H),◦) becomes an ordered
LA-semihypergroup, where F (H) denotes the family of all fuzzy subsets in H.

Definition 11. [21] For a fuzzy point at and a fuzzy subset f of H, we say that
(i) at ∈γ f if f (a)≥ t > γ ,
(ii) atqδ f if f (a)+ t > 2δ ,
(iii) at ∈γ ∨qδ f if at ∈γ f or atqδ f .

Definition 12. [21] Let γ,δ ∈ [0,1] be such that γ < δ . For any subsets A and B of H such that B ⊆ A, we
define χδ

γB be the fuzzy subset of H by χδ
γB(x) ≥ δ for all x ∈ B and χδ

γB(x) ≤ γ if x /∈ B. Clearly, χδ
γB is the

characteristic function of B if γ = 0 and δ = 1.

Definition 13. [21] For any fuzzy subsets f ,g of F (H), by f ⊆ ∨q(γ ,δ )g, we mean that xr ∈γ f implies
xr ∈γ ∨qδ g for all x ∈ H and r ∈ (γ,1].

Definition 14. [21] f =(γ ,δ ) g if f ⊆ ∨q(γ ,δ )g and g ⊆ ∨q(γ,δ ) f .

Lemma 1. [21] Let f and g be two fuzzy subsets. Then f ⊆ ∨q(γ ,δ )g if and only if max{g(a) ,γ} ≥
min{ f (a) ,δ}, where δ ,γ ∈ (0,1] such that γ < δ .

Corollary 1. [21] Let f , g, and h be fuzzy subsets such that f ⊆ ∨q(γ ,δ )g and g ⊆ ∨q(γ ,δ )h implies f ⊆
∨q(γ,δ )h.
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3. (∈γ ,∈γ ∨qδ )-FUZZY SETS IN ORDERED LA-SEMIHYPERGROUPS

In this section, we discuss some basic properties of (∈γ ,∈γ ∨qδ )-fuzzy sets in ordered LA-semihypergroups.

Definition 15. A fuzzy subset f of H is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup of H
(C1) if xt1 ∈γ f and yt2 ∈γ f =⇒ (z)min{t1,t2} ∈γ ∨qδ f for every z ∈ x◦ y such that γ < δ ;
(C2) if y ≤ x and xt ∈γ f =⇒ yt ∈γ ∨qδ f for all x,y ∈ H, t, t1, t2 ∈ (γ,1] such that γ < δ .

Example 1. Let H = {x,y,z} be an LA-semihypergroup defined as

◦ x y z
x {x,y} {x,y} z
y {x,z} {x,z} z
z z z z

and the order relation defined as ≤: {(x,x) ,(y,y) ,(z,z) ,(z,x) ,(z,y)} . Then (H,◦,≤) is an ordered LA-
semihypergroup. If we define f (x) = 0.8, f (y) = 0.7, f (z) = 0.6 and t1 = 0.3, t2 = 0.4, t = 0.5, γ = 0.2,
δ = 0.3, then clearly f is an (∈0.2,∈0.2 ∨q0.1)-fuzzy LA-subsemihypergroup of H.

Theorem 1. Let f be a fuzzy subset in H. Then f is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup of H if
and only if the following conditions hold:

(1) max{infz∈x◦y f (z) ,γ} ≥ min{ f (x) , f (y) ,δ},
(2) if y ≤ x, then max{ f (y) ,γ} ≥ min{ f (x) ,δ}, where δ and γ ∈ (0,1] such that γ < δ .

Proof. Let f be a fuzzy subset in H such that it is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup. Assume
that there exist x,y ∈ H such that (1) max{infz∈x◦y f (z),γ} < min{ f (x), f (y),δ}. Then there exist z ∈ x ◦ y
such that

max{ f (z),γ}< min{ f (x), f (y),δ}.

Choose t ∈ (0,1] such that max{infz∈x◦y f (z),γ} < t ≤ min{ f (x), f (y),δ}. Then max{infz∈x◦y f (z),γ} <
t ⇒ infz∈x◦y f (z) < t < γ . It follows that (z)t∈γ ∨qδ f for z ∈ x ◦ y. On the other hand, if (t ≤ min{ f (x),
f (y),δ}), we get ( f (x)≥ t > γ, f (y)≥ t > γ), which implies xt ∈γ f and yt ∈γ f but zt∈γ ∨qδ f for z∈ x◦y,
which is a contradiction to the hypothesis. Hence (1) is valid.

Again, assume that from (2) if y ≤ x, then max{ f (y) ,γ}< t ≤ min{ f (x) ,δ} for any t ∈ (0,1]. We have
f (x)≥ t > γ so xt ∈γ f but yt∈γ ∨qδ f , which is a contradiction to the hypothesis. Hence (2) is valid.

Conversely, assume that (1) is valid and there exist x∈H and t1, t2 ∈ (0,1] such that xt1 ∈γ f , and yt2 ∈γ f .
This implies that f (x)≥ t1 > γ, f (y)≥ t2 > γ .

So from (1) max{infz∈x◦y f (z) ,γ} ≥ min{ f (x) , f (y) ,δ} ≥ min{t1, t2,δ}. We have the following two
cases:

(i) If min{t1, t2} ≤ δ , then infz∈x◦y f (z)≥ min{t1, t2}> γ . This implies that zmin{t1,t2} ∈γ f .
(ii) If min{t1, t2}> δ , then infz∈x◦y f (z)+min{t1, t2}> 2δ . This implies that zmin{t1,t2}qδ f .
Hence from the above cases we get zmin{t1,t2} ∈γ ∨qδ f . Assume (2) is valid and x ∈ H and t ∈ (0,1] such

that xt1 ∈γ f . This implies that f (x) ≥ t > γ . So from (2) if y ≤ x, then max{ f (y) ,γ} ≥ min{ f (x) ,δ} ≥
min{t,δ}. We have the following two cases:

(i) If t ≤ δ , then f (y)≥ t2 > γ . This implies that yt ∈γ f .
(ii) If t > δ , then f (y)+ t > 2δ . This implies that ytqδ f .
Hence from the above cases we get yt ∈γ ∨qδ f . Thus f is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup

of H.

Lemma 2. Let /0 ̸=A⊆H. Then A is an ordered LA-subsemihypergroup of H if and only if the characteristic
function χδ

γA of A is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup of H, where δ ,γ ∈ (0,1] such that γ < δ .

Proof. The proof is straightforward.
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Definition 16. The ∈γ ∨qδ -fuzzy level set for the fuzzy subset of f is defined as [ f ]t = {x ∈ H : xt ∈γ ∨qδ f}.

Theorem 2. A fuzzy subset f is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup of H if and only if /0 ̸= [ f ]t is
an LA-subsemihypergroup of H.

Proof. Let /0 ̸= [ f ]t be an LA-subsemihypergroup of H. We have to show that f is an (∈γ ,∈γ ∨qδ )-
fuzzy LA-subsemihypergroup of H. Assume that x,y ∈ H and t ∈ (0,1], such that (max{infz∈x◦y f (z) ,γ}<
t ≤ min{ f (x) , f (y) ,δ}). Then (max{infz∈x◦y f (z) ,γ} < t ⇒ max{ f (z) ,γ} < t, so f (z) < t < γ), i.e.,
zt∈γ ∨qδ f . On the other hand, if (t1 ≤ min{ f (x) , f (y) ,δ}) , then ( f (x)≥ t1 > γ, f (y)≥ t1 > γ) , i.e., xt1, ∈γ
f and yt2 ∈γ f , but zt1∈γ ∨qδ f , which is a contradiction to the hypothesis. Thus (max{infz∈x◦y f (z) ,γ} ≥
min{ f (x) , f (y) ,δ}). Also assume that x,y∈H and t ∈ (0,1], such that (max{ f (y) ,γ}< t ≤min{ f (x) ,δ}).
Then (max{ f (y) ,γ} < t ⇒ max{ f (y) ,γ} < t, so f (y) < t < γ), i.e., yt∈γ ∨qδ f . On the other hand, if
(t ≤ min{ f (x) ,δ}) , then ( f (x)≥ t > γ) , i.e., xt1, ∈γ f , but yt1∈γ ∨qδ f , which is a contradiction to the hy-
pothesis. Thus (max{ f (y) ,γ} ≥ min{ f (x) ,δ}). Hence f is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup
of H. Conversely, let f be an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup of H. Then xt ∈γ [ f ]t and yt ∈γ [ f ]t
imply that (( f (x)≥ t > γ, f (x)+ t > 2δ )) and (( f (y)≥ t > γ, f (y)+ t > 2δ )) . Now by using the hypoth-
esis we have max{infz∈x◦y f (z) ,γ}≥ min{ f (x) , f (y) ,δ}≥ min{t, t,δ}= t. This shows that z ∈ [ f ]t , for all
x ∈ [ f ]t and y ∈ [ f ]t . Also, max{ f (y) ,γ} ≥ min{ f (x) ,δ} ≥ min{t,δ}= t and we get y ≤ x, then y ∈ [ f ]t .
Hence [ f ]t is an ordered LA-subsemihypergroup of H.

Theorem 3. The intersection of any two (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroups of H is an (∈γ ,∈γ
∨qδ )-fuzzy LA-subsemihypergroup of H.

Proof. Let f and g be two (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroups of H. We will show that f ∩g = is
also an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup of H. We assume that xt1 ∈γ f ∩ g and yt2 ∈γ f ∩ g.
This implies that xt1 ∈γ f , xt1 ∈γ g and yt2 ∈γ f , yt2 ∈γ g. Now using the fact that f and g are two
(∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroups of H, we have zmin{t1,t2} ∈γ ∨qδ f and zmin{t1,t2} ∈γ ∨qδ g. This
implies that zmin{t1,t2} ∈γ ∨qδ f ∩ g. Also if y ≤ x, then assume that xt1 ∈γ f ∩ g. This implies that xt1 ∈γ f ,
xt1 ∈γ g. Now using the fact that f and g are two (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroups of H, we
have yt ∈γ ∨qδ f and yt ∈γ ∨qδ g. This implies that yt ∈γ ∨qδ f ∩ g. Hence f ∩ g is an (∈γ ,∈γ ∨qδ )-fuzzy
LA-subsemihypergroup of H.

Definition 17. A fuzzy subset f of H is an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H if f satisfies (C2) and
xt ∈γ f , y ∈ H =⇒ (z)t ∈γ ∨qδ f , t ∈ (γ,1] for all z ∈ y◦ x.

Definition 18. A fuzzy subset f of H is an (∈γ ,∈γ ∨qδ )-fuzzy right hyperideal of H if f satisfies (C2) and
xt ∈γ f , y ∈ H =⇒ (z)t ∈γ ∨qδ f , t ∈ (γ,1] for all z ∈ x◦ y.

A fuzzy subset f is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal if it is both an (∈γ ,∈γ ∨qδ )-fuzzy left and an
(∈γ ,∈γ ∨qδ )-fuzzy right hyperideal of H.

Theorem 4. For an ordered LA-semihypergroup H, the following conditions are equivalent:
(i) f is an (∈γ ,∈γ ∨qδ )-fuzzy left (resp., right) hyperideal of H,
(ii) H ◦ f ⊆ ∨q(γ ,δ ) f (resp., f ◦H ⊆ ∨q(γ ,δ ) f ), where H (x) = 1 and for all x ∈ H.

Proof. (i)⇒(ii) Let f be an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H and a ∈ H. Let us suppose that there
exist x,y ∈ H such that a ∈ x◦ y. In order to show that H ◦ f ⊆ ∨q(γ,δ ) f , we have to show that

(1) (max{ f (a) ,γ} ≥ min{H ◦ f (a) ,δ}) ,
(2) if y ≤ x, then (max{ f (x) ,γ} ≥ min{H ◦ f (y) ,δ}) , where δ ,γ ∈ (0,1] such that γ < δ .
Let us consider (1)

(H ◦ f )(a) = ∨a∈x◦y[min{H (x), f (y)}] = ∨a∈x◦y[min{1, f (y)}] = ∨a∈x◦y f (y).
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Since f is an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H, we have max{infa∈x◦y f (a) ,γ} ≥ min{ f (y) ,δ}. In
particular, f (y) ≤ f (a) for all a ∈ x ◦ y. Hence ∨a∈x◦y f (y) ≤ f (a). Thus min{H ◦ f (a) ,δ} = min{(1 ◦
f )(a),δ} ≤ max{ f (a) ,γ}. If there do not exist x,y ∈ H such that a ∈ x◦y, then H ◦ f (a) = (H ◦ f )(a) =
0 ≤ f (a) , so again we have min{H ◦ f (a) ,δ}= min{(1◦ f )(a),δ} ≤ max{ f (a) ,γ}.

Let us consider (2)

(H ◦ f )(a) = ∨a∈x◦y[min{H (x), f (y)}] = ∨a∈x◦y[min{1, f (y)}] = ∨y∈a◦b f (y).

Since f is an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H, we have y≤ x, then (max{ f (x) ,γ} ≥ min{ f (y) ,δ}) .
In particular, f (y)≤ f (x). Hence ∨y∈a◦b f (y)≤ f (x). Thus min{ f (y) ,δ} ≤ max{ f (x) ,γ}. If there do not
exist x,y∈H such that a∈ x◦y, then H ◦ f (a) = (H ◦ f )(a) = 0≤ f (a), so again we have min{ f (y) ,δ}≤
max{ f (x) ,γ}. Thus H ◦ f ⊆ ∨q(γ,δ ) f .

(ii)⇒(i) Let x,y ∈ H and a ∈ x◦ y. Then inf
a∈x◦y

f (a)≥ (H ◦ f )(a). We have

(H ◦ f )(a) = ∨
a∈x◦y

[min{H (x), f (y)}]≥ min{H (x), f (y)}= min{1, f (y)}= f (y).

Consequently, infa∈x◦y f (a)≥ f (y), which implies that max{infa∈x◦y f (a) ,γ}≥min{ f (y) ,δ}. Also if y≤ x,
then f (x)≥ (H ◦ f )(y). We have

(H ◦ f )(a) = ∨
a∈x◦y

[min{H (x), f (y)}]≥ min{H (x), f (y)}= min{1, f (y)}= f (y).

Consequently, f (x)≥ f (y), which implies that max{ f (x) ,γ} ≥ min{ f (y) ,δ}. Hence f is an (∈γ ,∈γ ∨qδ )-
fuzzy left hyperideal of H.

Theorem 5. Let f be a fuzzy subset in H. Then f is an (∈γ ,∈γ ∨qδ )-fuzzy left (resp., right) hyperideal of
H if and only if

max{ inf
z∈x◦y

f (z) ,γ} ≥ min{ f (y) ,δ},

If y ≤ x, then max{ f (x) ,γ} ≥ min{ f (y) ,δ};
(resp., max{ inf

z∈x◦y
f (z) ,γ} ≥ min{ f (x) ,δ}),

If y ≤ x, then max{ f (x) ,γ} ≥ min{ f (y) ,δ},

where δ and γ ∈ (0,1] such that γ < δ .

Proof. Similar to the proof of Theorem 1.

Theorem 6. Let /0 ̸= A ⊆ H. Then A is a left (resp., right) hyperideal of H if and only if the fuzzy character-
istic function χδ

γ A of A is an (∈γ ,∈γ ∨qδ )-fuzzy left (resp., right) hyperideal of H, where δ ,γ ∈ D(0,1] such
that γ < δ .

Proof. The proof is straightforward.

Theorem 7. A fuzzy subset f of H is an (∈γ ,∈γ ∨qδ )-fuzzy left (resp., right) hyperideal of H if and only if
/0 ̸= [ f ]t is a left (resp., right) hyperideal of H.

Proof. Similar to the proof of Theorem 2.

Theorem 8. A fuzzy subset f is an (∈γ ,∈γ ∨qδ )-fuzzy left (resp., right, two-sided) hyperideal of H if and
only if the non-empty fuzzy level set U( f ;(t,γ)) = {x ∈ H : f (x) ≥ t > γ} is a left (resp., right, two-sided)
hyperideal of H, where t,γ ∈ [0,1).
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Proof. The proof is straightforward.

Lemma 3. Let H be an ordered LA-semihypergroup and let f and g be an (∈γ ,∈γ ∨qδ )-fuzzy right hyper-
ideal and (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H, respectively. Then f ◦g ⊆ ∨q(γ ,δ ) f ∩g.

Proof. If x ∈ H such that x /∈ y ◦ z, then f (x) = 0, so (max{ f (x),γ} ≥ min{ f (x),δ}) , and if y ≤ x, then
max{ f (x) ,γ} ≥ min{ f (y) ,δ}), where δ ,γ ∈ (0,1] such that γ < δ . On the other hand, if x ∈ y◦ z for some
y and z ∈ H, then we have

min{ f (x),δ} = min{∨x∈y◦z{min{ f (y),g(z)}},δ}= min{min{ f (y),g(z)},δ}
= min{min{ f (y),δ},min{g(z),δ}}
≤ min{max{ inf

x∈y◦z
f (x) ,γ},max{ inf

x∈y◦z
f (x) ,γ}} by hypothesis

= max{ f (x),γ},

also

min{ f (y),δ} = min{∨y∈p◦z{min{ f (p),g(z)}},δ}= min{min{ f (p),g(z)},δ}
= min{min{ f (p),δ},min{g(z),δ}}
≤ min{max{∨y∈p◦z f (y) ,γ},max{∨y∈p◦z f (y) ,γ}} by hypothesis
= max{ f (x),γ}.

Thus f ◦g ⊆ ∨q(γ,δ ) f ∩g.

Theorem 9. Let H be an ordered LA-semihypergroup with pure left identity e. Then every (∈γ ,∈γ ∨qδ )-fuzzy
right hyperideal of H is an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H.

Proof. Let f be an (∈γ ,∈γ ∨qδ )-fuzzy right hyperideal of H, and let x,y ∈ H. Then z ∈ x◦ y = (e◦ x)◦ y =
(y◦ x)◦ e,

max{ sup
z∈x◦y

f (z),γ} = max{ sup
z∈(y◦x)◦e

f (z),γ} ≥ min{ f (y),δ},

if y ≤ x, then max{ f (y),γ} ≥ min{ f (y),δ}.

Hence f is an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H and therefore f is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal
of H.

Corollary 2. Let H be an ordered LA-semihypergroup with pure left identity e. Then every (∈γ ,∈γ ∨qδ )-
fuzzy right hyperideal of H is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal of H.

Proof. The proof is straightforward.

Theorem 10. Let H be an ordered LA-semihypergroup and let { fi}i∈∧ be a family of (∈γ ,∈γ ∨qδ )-fuzzy
hyperideals of H. Then ∩i∈∧ fi is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal of H.

Proof. Similar to the proof of Theorem 3.

Definition 19. A fuzzy subset f of H is an (∈γ ,∈γ ∨qδ )-fuzzy bi-hyperideal of H if for all x,y,z ∈ H and
t1, t2 ∈ (0,1], it satisfies (C1), (C2) and xt1 ∈γ f , zt2 ∈γ f implies that wmin{t1,t2} ∈γ ∨qδ f for all w ∈ (x◦y)◦ z.
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Example 2. Let H = {e,x,y,z,w} be an LA-semihypergroup as defined below:

◦ e x y z w
e e x y z w
x y z z {z,w} w
y x z z {z,w} w
z z {z,w} {z,w} {z,w} w
w w w w w w

and the order relation as ≤: {(e,e) ,(x,x) ,(y,y) ,(z,z) ,(w,e) ,(w,x) ,(w,y) ,(w,z) ,(w,w)}. Then (H,◦,≤) is
an ordered LA-semihypergroup. Define

f (a) =


0.9 if a = e

0.8 if a ∈ {x,y}
0.6 if a = z
0.5if a = w

t = t1 = 0.3, t2 = 0.4, γ = 0.2, and δ = 0.3. Then clearly f is an (∈0.2,∈0.2 ∨q0.1)-fuzzy bi-hyperideal of H.

Theorem 11. For an ordered LA-semihypergroup H the following holds:
(i) Every (∈γ ∨qδ ,∈γ ∨qδ )-fuzzy hyperideal of H is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal of H.
(ii) Every (∈γ ,∈γ)-fuzzy hyperideal of H is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal of H.

Proof. The proof is straightforward.

Theorem 12. Every (∈γ ,∈γ ∨qδ )-fuzzy left (resp., right) hyperideal of H is an (∈γ ,∈γ ∨qδ )-fuzzy bi-
hyperideal of H.

Proof. Let f be an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H. Consider max{inft∈(x◦y)◦z f (t),γ}≥min{ f (z),δ}
by using the fact that f is an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H. Also

max{ inf
t∈(x◦y)◦z

f (t),γ}= max{ inf
t∈(z◦y)◦x

f (t),γ} ≥ min{ f (x),δ}.

Combining the both, we have max{inft∈(x◦y)◦z f (t),γ}≥min{ f (x), f (z),δ}. Also if y≤ x, then max{ f (y),γ}
≥ min{ f (y),δ}. Hence f is an (∈γ ,∈γ ∨qδ )-fuzzy bi-hyperideal of H.

Theorem 13. Let F (H) be the set of all (∈γ ,∈γ ∨qδ )-fuzzy hyperideals of H. Then (F (H),∪,∩,⊆ ∨q(γ ,δ ))
forms the structure of a hyperlattice.

Proof. (i) Reflexive: Since for all f ∈ F (H), xα ∈γ f implies that xα ∈γ ∨qδ f , ∀ x ∈ H. So f ⊆ ∨q(γ,δ ) f .
(ii) Antisymmetric: For any f ,g ∈ F (H) such that f ⊆ ∨q(γ ,δ )g and g ⊆ ∨q(γ ,δ ) f , we have

((max{g(a) ,γ} ≥ min{ f (a) ,δ},(max{ f (a) ,γ} ≥ min{g(a) ,δ})) ,

where δ ,γ ∈ (0,1] such that γ < δ . We have max{min{g(x) ,δ},γ} = max{min{ f (x) ,δ},γ}. Hence f =
∨q(γ,δ )g.

(iii) Transitive: Let f ,g,h ∈F (H) such that f ⊆∨q(γ,δ )g and g ⊆∨q(γ ,δ )h. Then f ⊆∨q(γ,δ )h by Corol-
lary 1. Thus (F (H),⊆ ∨q(γ ,δ )) is a poset.

Now given f ,g ∈ F (H), we define inf{ f ,g}= f ∩g = {⟨x,min{ f (x),g(x)}⟩ : x ∈ H} . In order to both
inf{ f ,g} and sup{ f ,g} belong to F (H), we need to show that f ∩g and f ∪g are (∈γ ,∈γ ∨qδ )-fuzzy hy-
perideals. Since the intersection of two (∈γ ,∈γ ∨qδ )-fuzzy hyperideals is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal,
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inf{ f ,g}= f ∩g ∈ F (H). Since

max{ inf
z∈x◦y

f (z) ,γ} = max{ inf
z∈x◦y

{max{ f (z) ,g(z)},γ}}

= max{{ inf
z∈x◦y

f (z) ,γ},{ inf
z∈x◦y

g(z) ,γ}}

≥ max{{min{ f (x) ,δ}},{min{g(x) ,δ}}}
= min{ f (x) ,δ},

we obtain that sup{ f ,g} = f ∪ g is an (∈γ ,∈γ ∨qδ )-fuzzy right hyperideal of H. Similarly we can show
that it is an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H. Hence sup{ f ,g} = f ∪ g is an (∈γ ,∈γ ∨qδ )-fuzzy
hyperideal of H. Thus sup{ f ,g}= f ∪g ∈ F (H). Hence (F (H),∪,∩,⊆ ∨q(γ ,δ )) forms a hyperlattice. �

Lemma 4. Let H be an ordered LA-semihypergroup. If f and g are an (∈γ ,∈γ ∨qδ )-fuzzy right (resp., left)
hyperideal of H, then f ◦g is also an (∈γ ,∈γ ∨qδ )-fuzzy right (resp., left) hyperideal of H.

Proof. The proof is straightforward.

Theorem 14. Let F (H) be the set of all (∈γ ,∈γ ∨qδ )-fuzzy hyperideals of H. Then (F (H),◦) forms an
ordered LA-semihypergroup.

Proof. The proof is straightforward.

Proposition 2. Let H be an ordered LA-semihypergroup with pure left identity e and if f is an (∈γ ,∈γ ∨qδ )-
fuzzy right hyperideal of H, then f ◦ f is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal of H.

Proof. By Theorem 9 every (∈γ ,∈γ ∨qδ )-fuzzy right hyperideal of H is an (∈γ ,∈γ ∨qδ )-fuzzy left hyper-
ideal of H. Hence f is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal of H. Assume that there do not exist some x,y ∈ H
such that a ∈ x ◦ y for a ∈ H. Then f (a) = 0. So (max{inft∈x◦y f (t),γ} ≥ min{ f (x),δ}) . Now if there
exist x,y ∈ H such that a ∈ x◦y, then min{ f (a),δ}= min{supa∈x◦y{min{ f (x), f (y)}},δ}. If a ∈ x◦y, then
a◦b ∈ (x◦ y)◦b = (b◦ y)◦ x. Therefore

min{ f (a),δ} = min{ sup
a∈x◦y

{min{ f (x), f (y)}},δ}= min{ sup
a∈x◦y

{min{ f (y), f (x)}},δ}

≤ min{ sup
a∈x◦y

{min{ f (b◦ y), f (x)}},γ} ≤ min{ sup
a◦b⊆(b◦y)◦x

{min{ f (b◦ y), f (x)}},γ}

≤ max{ inf
z∈a◦b

f (z),γ}.

Thus (max{infz∈a◦b f (z),γ} ≥ min{ f (a),δ}) . Also if y ≤ x, then max{ f (y),γ} ≥ min{ f (y),δ}. Hence
f ◦ f is an (∈γ ,∈γ ∨qδ )-fuzzy right hyperideal of H. Now by Theorem 9 every (∈γ ,∈γ ∨qδ )-fuzzy right hy-
perideal of H is an (∈γ ,∈γ ∨qδ )-fuzzy left hyperideal of H. Hence f ◦ f is an (∈γ ,∈γ ∨qδ )-fuzzy hyperideal
of H.

Theorem 15. Let F (H) be the set of all (∈γ ,∈γ ∨qδ )-fuzzy hyperideals of H and H have the pure left
identity. Then for any f ,g,h ∈ F (H), f ◦ (g◦h) = g◦ ( f ◦h).

Proof. The proof is straightforward.

Definition 20. An (∈γ ,∈γ ∨qδ )-fuzzy bi-hyperideal f of H is an (∈γ ,∈γ ∨qδ )-fuzzy normal bi-hyperideal if
f (0) = 1.

Theorem 16. Let f ∗ be an (∈γ ,∈γ ∨qδ )-fuzzy subset in H defined by f (x) = f (x)+ 1− f (0). If f is an
(∈γ ,∈γ ∨qδ )-fuzzy bi-hyperideal of H, then f ∗ is an (∈γ ,∈γ ∨qδ )-fuzzy normal bi-hyperideal of H which
contains f .
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Proof. We have f (0) = f (0)+1− f (0) = 1. Given x,y,z ∈ H, we have

min{ inf
z∈x◦y

f (z),γ} = min{ inf
z∈x◦y

f (z)+1− f (0),γ}

≥ max{ f (x)+1− f (0), f (y)+1− f (0),δ}
= max{ f (x), f (y),δ},

and if y≤ x, then max{ f (y),γ}≥min{ f (y),δ}. Therefore f ∗ is an (∈γ ,∈γ ∨qδ )-fuzzy normal bi-hyperideal
of H. It is obvious that f ∗ contains f .

Theorem 17. Let f be an (∈γ ,∈γ ∨qδ )-fuzzy bi-hyperideal of H. Let f 1 : [0,1]→ [0,1] and f 2 = [0,1]→
[0,1] be increasing functions. Then the fuzzy subset f f defined by f (x) = f 1( f (x)) is an (∈γ ,∈γ ∨qδ )-fuzzy
bi-hyperideal of H. In particular, if f 1( f (0)) = 1, then f f is normal.

Proof. Let x,y ∈ H. Then consider

max{ inf
t∈x◦y

f (t),γ} = max{ inf
t∈x◦y

f 1( f (t)),γ}

≥ min{ f 1( f (x)), f 1( f (y)),δ}
= min{ f (x), f (y),δ},

and if y ≤ x, then max{ f (x),γ} ≥ min{ f (y),δ}. Thus f f is an (∈γ ,∈γ ∨qδ )-fuzzy bi-hyperideal of H. Now
if f 1( f (0)) = 1, then f (0) = 1, so f f is normal.

4. IMAGES AND PREIMAGES OF (∈γ ,∈γ ∨qδ )-FUZZY HYPERIDEALS

In this section we will present some results on images and preimages of (∈γ ,∈γ ∨qδ )-fuzzy hyperideals of
ordered LA-semihypergroups.

Definition 21. A map f : H1 → H2 where both H1 and H2 are LA-semihypergroups is called inclusion
homomorphism if f (a◦b)⊆ f (a)◦ f (b) for all a,b ∈ H1.

Let us denote by F (H1) the family of fuzzy subsets in a set H1. Let H1 and H2 be given classical sets.
A mapping h : H1 → H2 induces two mappings Fh : F (H1)→ F (H2), f 7→ Fh( f ), and F−1

h : F (H2)→
F (H1), g 7→ F−1

h (g), where Fh( f ) is given by

Fh( f )(y) =

supy∈h(x) f (x) if h−1(y) ̸= /0

0 otherwise
,

for all y ∈ H2 and F−1
h (g) is defined by F−1

h (g)(x) = g(h(x)). Then the mapping Fh (resp., F−1
h ) is called

an (∈γ ,∈γ ∨qδ )-fuzzy transformation (resp., inverse (∈γ ,∈γ ∨qδ )-fuzzy transformation) induced by h. An
(∈γ ,∈γ ∨qδ )-fuzzy subset in H1 has the (∈γ ,∈γ ∨qδ )-fuzzy property if for any subset T of H1 there exists
x0 ∈ T such that f (x0) = supx∈T f (x).

Theorem 18. For a hyperhomomorphism h : H1 → H2 of ordered LA-semihypergroups, let Fh : F (H1)→
F (H2) and F−1

h : F (H2) → F (H1) be an (∈γ ,∈γ ∨qδ )-fuzzy transformation and inverse (∈γ ,∈γ ∨qδ )-
fuzzy transformation, respectively, induced by h.

(i) If f ∈F (H1) is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup of H1 which has the (∈γ ,∈γ ∨qδ )-fuzzy
property, then Fh( f ) is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup of H2.

(ii) If g ∈ F (H2) is an (∈γ ,∈γ ∨qδ )-fuzzy LA-subsemihypergroup of H2, then F−1
h (g) is an (∈γ ,∈γ

∨qδ )-fuzzy LA-subsemihypergroup of H1.
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Proof. (i) Given h(x),h(y) ∈ h(H1), let x0 ∈ h−1(h(x)) and y0 ∈ h−1(h(y)) be such that

f (x0) = sup
a∈h−1(h(x))

f (a).

Then

max{Fh( f )(h(x)h(y)),γ} = max{ sup
z∈h−1(h(x)h(y))

( f )(z),γ}

≥ max{( f )(x0 ◦ y0),γ}
≥ min{( f )(x0),( f )(y0),δ}
= min{ sup

a∈h−1(h(x))
f (a), sup

b∈h−1(h(y))
f (b),δ}

= min{Fh( f )(h(x)),Fh( f )(h(y)),δ},

also if y ≤ x and we have max{Fh( f )/(h(x)),γ} ≥ min{Fh( f )(h(y)),δ}. Thus Fh( f ) is an (∈γ ,∈γ ∨qδ )-
fuzzy LA-subsemihypergroup of H2.

(ii) For any x,y ∈ H1, we have

max{F−1
h (g)(x◦ y),γ} = max{g(h)(xy),γ}

= max{g((h)(x)(h)(y)),γ}
≥ min{(g)(h(x)),(g)(h(y)),δ}
= min{F−1

h (g)(x),F−1
h (g)(y),δ},

also if y ≤ x and we have max{F−1
h (g)(x),γ}≥ min{F−1

h (g)(y),δ}. Hence F−1
h (g) is an (∈γ ,∈γ ∨qδ )-fuzzy

LA-subsemihypergroup of H1.

Theorem 19. For a hyperhomomorphism h : H1 → H2 of LA-semihypergroups, let Fh : F(H1)→ F(H2) and
F−1

h : F(H2) → F(H1) be the (∈γ ,∈γ ∨qδ )-fuzzy transformation and inverse (∈γ ,∈γ ∨qδ )-fuzzy transfor-
mation, respectively, induced by h.

(i) If f ∈ F(H1) is an (∈γ ,∈γ ∨qδ )-fuzzy left (resp., right) ideal of H1 which has the (∈γ ,∈γ ∨qδ )-fuzzy
property, then Fh( f ) is an (∈γ ,∈γ ∨qδ )-fuzzy left (resp., right) ideal of H2.

(ii) If g ∈ F(H2) is an (∈γ ,∈γ ∨qδ )-fuzzy left (resp., right) ideal of H2, then F−1
h (g) is an (∈γ ,∈γ ∨qδ )-

fuzzy left (resp., right) ideal of H1.

Proof. The proof is straightforward.

5. CONCLUSION

In this paper we introduced a new type of fuzzy subsets, namely (∈γ ,∈γ ∨qδ )-fuzzy subsets in non-
associative ordered semihypergroups. We defined different types of (∈γ ,∈γ ∨qδ )-fuzzy hyperideals of
ordered LA-semihypergroups. In future we are aiming to get more results related to

1. (∈γ ,∈γ ∨qδ )-fuzzy subsets in regular and intra-regular ordered LA-semihypergroups,
2. (∈γ ,∈γ ∨qδ )-fuzzy interior hyperideals in ordered LA-semihypergroups,
3. (∈γ ,∈γ ∨qδ )-fuzzy quasi-hyperideals in ordered LA-semihypergroups.
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