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Abstract. Accurate modelling of wind speed is very important for the assessment of the wind energy potential of a region. The
two-parameter Weibull distribution is widely used to model wind speed. Many different numerical methods can be used to
estimate the shape and scale parameters of the Weibull distribution function. This paper proposes the estimation of parameters
based on a novel approach, the Information Geometry Method (IGM). Non-Euclidean geometry and the Riemannian metric called
the Fisher metric or the information metric are used in this approach. Differential equations derived from the Fisher information
matrix are solved for the Weibull statistical manifold by the shooting method. The IGM is compared with the graphical method,
maximum likelihood method, method of Lysen, method of Justus, and power density method. In particular, it is shown that this
approach has a better performance than the other estimation methods according to the power density results for the periods of
three years from 2012 to 2014 for Bilecik, a city of Turkey. Therefore, the IGM as a new approach used for the estimation of
parameters of the Weibull distribution function can be a good alternative for the assessment of the wind energy potential.
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1. INTRODUCTION

Wind energy has been the most expeditious growing renewable energy technology in recent years. Along
with the development of the wind industry, the global capacity of wind turbines reached approximately
486 GW by the end of 2016 [1]. The potential of the wind energy of a certain region can be determined
before a wind conversion system is installed. The success of the determination of the wind energy
potential depends on accurate wind speed modelling. The statistical properties of wind speed are important
to predict the output energy of a wind conversion system [2]. There are several distribution functions for
wind speed and power density analysis in the literature. The log-normal distribution [3—6], inverse
Gaussian distribution [7], wake by [8,9], three-parameter log normal [10], gamma distribution [11,12],
two-parameter gamma distribution [13], hybrid distributions [14—16], three-parameter generalized gamma
distribution [6,17,18], and similar distribution functions are used in energy research and other research
areas. The two-parameter Weibull density function [19] is commonly used in wind resource assessment to
describe wind speed as a stochastic quantity. There are many different methods for estimating the shape
and scale parameters of the Weibull wind speed distribution function [19-23].
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This paper proposes a novel method based on information geometry for estimating the two-parameter
Weibull distribution function. The information geometry method (IGM) is compared with other parameter
estimation methods using 2012-2014 wind speed data for Bilecik, a city of Turkey. The paper is
structured as follows. Material and methods are presented in Section 2. Section 3 describes basic concepts
of information geometry, the Fisher information matrix, the IGM technique, and the Weibull statistical
manifold. In Section 4, the IGM and the results of estimation methods are presented for the calculation of
Weibull parameters. Comparisons of the results are presented and the superiority of the IGM is
emphasized in Section 5.

2. THE WEIBULL DISTRIBUTION

The two-parameter Weibull distribution is one of the most commonly used statistical approaches in the
modelling of wind speed data. The Weibull distribution function is given by Eq. (1) [24-29]:
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where f(v) is the frequency or probability of the occurrence of a wind speed, ¢ is the Weibull scale
parameter, and k is the Weibull shape parameter [30].

The cumulative Weibull distribution function F(v) gives the probability of the wind speed exceeding
the value v. It is expressed by Eq. (2) [31,32]:

F(v)=1 —e{g . (2)

The wind power is commonly found by the following equation:
1 3
P= 5 pPAV, )

where p (kg/m’) is the air density and 4 (m?) is the swept area.
The mean power density for the Weibull distribution is given by Eq. (4) [33,34]:
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where I' is the gamma function. At sea level and at 15 °C, the density of the air is approximately
po=1.225kg/m’. The corrected air density in reference to the height of the sea level (H,) and other
location information can be found according to Eq. (5) [35]:

p=po—1.194-10*H_. (5)

In this paper, by applying Eq. (5) the air density p = 1.1235 kg/m’ was calculated for Bilecik.

3. METHODS FOR ESTIMATING WEIBULL PARAMETERS

There are several methods for estimating the shape and scale parameters of the Weibull distribution
function in the literature. In this paper, analysis of wind energy potential is performed using the graphical
method (GM), maximum likelihood method (MLM), method of Justus (MJ), method of Lysen (ML),
power density method (PDM), and a novel method based on Information Geometry (IGM).
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3.1. Graphical method

The cumulative distribution function is used in the GM. Wind speed data are interpolated based on the
least square regression [36]. In this method, both sides of the equation of the cumulative probability
density function are obtained with Eq. (6) by twice taking the natural logarithm.

ln[—ln[l—F(v)]]=k1nv—k1nc. (6)

A plot of In[-In[1-F(v)]] versus the In v graph presents a straight line with a slope of k. The application of
the graphical method requires that the wind speed data be in the cumulative distribution format.

3.2. Maximum likelihood method

The MLM is proposed in [19]. This method requires large-scale numerical iterations. The shape (k) and
the scale parameter (c) are calculated by Eqgs (7) and (8), respectively.
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where v; is the iy, observed wind speed and # is the number of all observed non-zero wind speeds.
3.3. Empirical methods

Emprical methods MJ and ML were proposed respectively by Justus et al. [20] and Lysen [22]. According
MJ, the shape (k) and scale (c) parameters are calculated respectively by Eqs (9) and (10) [36].
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where o is the standard deviation of wind speed (m/s), v is the mean wind speed (m/s), and I" is gamma
function. Lysen uses the same shape parameter (k) as is used in Eq. (9) in the MJ. In the ML, the scale
parameter equation (11) is obtained as follows [22]:
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3.4. Power density method

Akdag and Dinler [21] suggest that the shape and scale parameters be estimated because this has a simpler
formula.



42 Proceedings of the Estonian Academy of Sciences, 2018, 67, 1, 39—49

By using Egs (4) and (8) one obtains Eq. (12):
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where v is the energy pattern factor (E,s). Weibull parameters can be estimated approximately by the
\Y
PDM, which is given by Eq. (13):
k=1+ 3'692. (13)
(Epf)

3.5. Information geometry method

Information geometry’s main idea is to apply methods and techniques of non-Euclidean geometry to
stochastic process and probability theories. Information geometry indicates that the use of a Euclidian
geometry technique is not absolutely correct. Galanis et al. [37] proposed a novel approach based on
statistical and geometrical techniques, which is information geometry for wave height characteristics in
the North Atlantic Ocean. They presented two scenarios that work for points in the same neighbourhood
using geodesics. In this paper, the use of geodesics is examined in detail.

Families of probability distributions are described as manifolds on which geometrical things such as
distances, Riemannian metrics, curvature, and affine connection can be presented. A family of probability
distributions is recognized as an n-dimensional statistical manifold S [37].

S={p; =pv)¢ =¢1:¢252¢u]1 € B} (14)

The geometrical model in a statistical manifold is defined by the Fisher information matrix, which at
point ¢ is an n X n matrix G(¢') =[g;(¢)] defined by [38-40]

gz_’j(g):EV|§[81’€(V;§)8]‘€(V;§)]:Iaif(‘};é/)ajg(‘);g)p(‘};é/)dva i,j=12,...,n. (15
Here ¢ is the log-likelihood function, which is given by Eq. (16):
(v, &)=L (v)=log[p(v,Q)], (16)
and Eq. (17) shows the expectation with respect to the distribution p:
Eg f1=[ f0)p({)dv. (17)

The Fisher metric or the information metric is a Riemannian metric. These model properties are
defined by the so-called Christoffel symbols (I, ) of the Levi-Civita connection with respect to the Fisher
metric, which are defined by solving the following equation [41]:

2 .
Yl =Tun  (h=12), (18)
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The minimum distance between two elements f; and £, of a statistical manifold S is defined by the
corresponding geodesic w, which is the minimum length curve that connects them [41]. Such a curve that
satisfies the following system of second-order ordinary differential equations is given by

o=(w;):R>S:

w, (t) + Z Iy (00,0, (=0 i=12,.n (19)
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under the conditions w(0) = fi,w(1) = f>.

In the literature, detailed information about and results of applying information geometry techniques
can be found in Amari [38], Amari and Nagaoka [39], and Arwini and Dodson [40,42].

The Weibull distribution function is given by Eq. (1) in Section 2. The family of the two-parameter Weibull
distributions can be considered as a 2-dimensional statistical manifold with { =[k,c],Z = {[k, clik,c >0}
and

k(v oo- :
p(V;§)=—(—j e [‘J : (20)
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The log-likelihood function becomes
k
[(v,&)=log(p(v,{))=logk —logc+ (k—1)(logv—logc) — (Z) . (21)
c
The Fisher information matrix can be calculated by Eq. (15) [38,39]:
k*c? c(l1-7%)
G(k,c)= 6(y — 1)2 +22 ] (22)
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where the Euler gamma is y = 0.577215.
The Christoffel symbols of the Levi-Civita connection with respect to the Fisher metric, which are
defined by solving Eq. (18), are given in Eq. (23):
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So substitution of Eq. (23) into Eq. (19) yields
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The shape and scale parameters can be determined by Eq. (24), which can be solved numerically.
NDSolve of Mathematica based on the shooting method is used for the solution. The boundary conditions
of the differential equation system are chosen according to the values from applying other estimating
parameter methods, namely GM and MLM, in the solution steps. Detailed information about the solution
steps is explained with sample wind speed data in Section 4.

4. RESULTS AND DISCUSSION

4.1. Site location and data collection at Bilecik in Turkey

Bilecik is located 850 m above sea level in Turkey at 39°39'N, 30°40'E (Fig. 1). Hourly wind speed was
recorded by the Turkish State Meteorological Service for the period of three years from January 2012 to
December 2014. The wind speed was measured by a three-cup anemometer at a height of 10 m above a
runway.

4.2. Case study and wind speed data

In Table 1, some descriptive statistics such as maximum, mean, standard deviation, skewness, and kurtosis
of the used wind speed data for the Bilecik station are presented. The coefficient of kurtosis, which
measures the peakedness of a distribution, is very high for Bilecik.

Fig. 1. Location of the selected station, Bilecik City, in Turkey.
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Table 1. Statistical values of wind speed data for Bilecik

Maximum (m/s) | Minimum (m/s) | Mean (m/s) | Standard deviation (m/s) | Skewness | Kurtosis

12.00 0.2 2.0318 1.1306 1.0800 4.2291

The probability and cumulative probability densities of the measured wind speed for Bilecik are shown
in Fig. 2. These data give a very good insight into the properties of the wind speed in the selected region.

In this paper, six different methods — GM, MJ, ML, MLM, PDM, and a novel method, IGM — are used
for the parameter estimation of the Weibull distribution. The shape and scale parameters were calculated
by Eq. (24) in the IGM. The probability density function of the MLM has the shape parameter k= 1.9236
and the scale parameter ¢ = 2.3030, while for the relevant GM outputs, £ =2.3588 and ¢ =2.6292. The
minimum length curve that gives the distance between the two distributions is a two-dimensional curve,
w = (w,, w,), that can be obtained as the solution of the following differential system:

o, (t) —0.648896(@' (t))2 +1.1527 @, () oy (t) 0.15166(@'2 (t))2 -0,
(25)

w, () 0. 135974(@{ (t))2 +0.429360; (H) ) (t) — 0.576349(@'2 (t))2 =0

. [k [1.9236 [k@)] [2.3588 [k
with #(0) = L(O)} - {2.3030} > o= L(l)} - {2.6292} > where w(t) = L(t)}'

This nonlinear differential system is solved numerically based on the shooting method with NDSolve.
The steps given in Fig. 3 are followed for the determination of the shape (k) and scale parameters (c) in the
IGM. Firstly, the boundary conditions can be determined for Eq. (24) from the GM and MLM. Secondly,
these equations are solved by some numerical methods such as the shooting method, which is used in this
paper. Optimal points, which are £(0.42) and ¢(0.58) for the shape and scale parameters, are found from
the geodesic curves for the Weibull statistical manifold. Optimal points are determined according to the
golden ratio in this approach. The variations of the shape (k) and scale (¢) parameters from January 2012
to December 2014 are shown in Fig. 4. Descriptive statistics of the wind power density were evaluated by
using six different methods and the measured data (Table 2). All analyses for the six different methods
were executed by using the Matrix Laboratory (MATLAB) programming language and the Mathematica
platform.
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Fig. 2. Probability and cumulative probability densities at 10 m height for the period of three years for Bilecik, Turkey.
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Fig. 4. Variations of the shape and scale parameters according to the Information Geometry Method from January 2012 to
December 2014.

Table 2. Wind power density (W/m?) and Weibull shape and scale parameters calculated by measured data and
six different methods*

Measured GM | w1 | ML | MM | ppm | 1GMm
Mean 9.9654 117144  9.5446 95635  9.5195  9.9226  9.9624
Shape parameter - 23588  1.8899 23588 19236  1.8249  2.17698
Scale parameter - 26292 22893 1.8021 23030 22862  2.43745

* See Section 3 for acronyms.

The IGM, which has 0.0301% error rate, performed better than the other methods for the period of
three years in terms of mean power density (see Table 2). Although the IGM gave better results for a large
data structure, its error rate, which has the Fisher Information Matrix structure, increased for monthly
analysis compared with the PDM (Table 3). A wide variance of data and smaller number of samples cause
a decrease in the accuracy of the model [43].
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5. CONCLUSIONS

Determination of the wind energy potential depends on accurate modelling of the wind speed. Statistical
properties of the wind speed are important for the prediction of the energy output in a wind conversion
system. The two-parameter Weibull distribution is widely used to model the variation of wind speed.

In this paper, a novel method, the IGM, is used for parameter estimation of the two-parameter Weibull
distribution. This new method is compared with other methods (GM, MJ, ML, MLM, and PDM) widely
used in the literature. From January 2012 to December 2014 the IGM, a new branch of mathematics,
showed better results than the five different methods mentioned above. Based on monthly analysis in the
same time period, the IGM was superior in performance compared to the GM, MJ, ML, and MLM, but
compared to the PDM its error rate was higher due to the smaller number of data and higher variance. In
the IGM, the annual error rate of 0.0301%, monthly best error rate of 1.1587%, and monthly worst error
rate of 8.0470% were observed according to power density values. In order to establish a wind energy
conversion system, it is important to determine the power values correctly.

As a result, this paper has added a new approach using information geometry, which is a non-Euclidian
structure, by using the Fisher Information Matrix to the literature for parameter estimation of the two-
parameter Weibull distribution.
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Uudne informatsiooni geomeetria meetod, miairamaks Weibulli tuulekiiruse jaotust
Mehmet Kurban, Emrah Dokur ja Salim Ceyhan

On uuritud Weibulli jaotusfunktsiooni kuju ja skaala vaértusega seonduvate parameetrite maaramist. Artiklis
on selle tarvis vélja pakutud informatsiooni geomeetria meetod (IGM). IGM moodustab statistiliste andme-
punktide kogumi, mis baseerub Fisheri informatsioonimaatriksi Riemanni kogumitel. Mudelis leitakse
optimaalsed punktid kuju ja skaala maddramiseks geodeetilistelt kurvidelt vastavalt Weibulli statistilise jaotuse
kuldsele suhtele.

Metoodika valideerimiseks on kisitletavat meetodit vorreldud ka graafilise meetodi, maksimaalse tGe-
ndosuse hinnangu (MLM), Lyseni meetodi (ML), Justuse meetodi (MJ-ML) ja véimsustihedusmeetodiga.
Vordlusarvutustes on kasutatud Tiirgi Bileciki provintsis moddetud tuulte kiirusi, mis jddvad vahemikku
2,03—-12 m/s. Algandmete osas vajab markimist asjaolu, et tuulekiiruste valimi normaaljaotuse kurtoos on
suur. Meetodite vordluses niditab IGM isegi PDM-meetodist paremaid tulemusi. IGM-meetodi aastane
veaméér on 0,0301%, mis on parem kui iilejadnud viiel meetodil.



