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Abstract. A fully algebraic approach to constructing one-dimensional reflectionless potentials with any number (N) of bound
states is described. A simple and easily applicable general formula is derived, using the methods of the theory of determinants. In
particular, useful properties of special determinants – the alternants – have been exploited. The modified determinant that uniquely
fixes the potential contains only 2N−1 terms, which is a huge win compared to the N! terms of the original expansion. Moreover,
the modified determinant can be very easily evaluated using the properties of alternants. To this end, two useful theorems have been
proved. The main formula takes an especially simple form if one aims to reconstruct a symmetric reflectionless potential. Several
examples are presented to illustrate the efficiency of the method.

Key words: inverse scattering, Gel
′
fand–Levitan–Marchenko equation, reflectionless potentials, alternants, elementary symmetric

polynomials.

1. INTRODUCTION

The formulation and solution of inverse problems is an increasingly important field of scientific research.
However, compared to a well-posed (in Hadamard’s sense) direct or forward problem, the corresponding
inverse problem is much more difficult and, as a rule, ill-posed. The inverse scattering problem can be
considered an exception to this rule. Namely, in the simplest one-dimensional case, the inverse scattering
theory provides strict mathematical criteria for the existence, uniqueness, and stability of the solution. It
means that in this particular case the inverse problem is well-posed as well.

The related forward problem is the solution of the simplest time-independent Schrödinger equation

Ψ′′(x) =
V (x)−E

C
Ψ(x), C ≡ h̄2

2m
(1)

for a given potential V (x), and subjected to appropriate physical boundary conditions. Equation (1) can
be easily solved numerically and thus, in principle, all spectral characteristics of the potential V (x) can be
accurately ascertained.

The inverse problem is to determine the unknown potential starting from the known spectral charac-
teristics. This is a serious task even in this simple case due to the following problems:
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1. It is not obvious what kind of input information is actually needed to solve the problem uniquely.
2. There must be a theoretical basis (a fundamental equation) which enables us to solve the problem.
3. Apart from the theoretical difficulties, another important question arises: how to obtain the necessary

input data?
4. Even if the mentioned principal barriers could be overcome, the computational–technical solution of the

problem is not at all trivial.
Problems 1 and 2 have been successfully solved in the early 1950s for the class of potentials on the half

line: x ∈ [0,∞). The necessary and sufficient conditions for the unique solution of the inverse problem have
been formulated in a series of outstanding theoretical works by Marchenko [1,2], Gel

′
fand and Levitan [3],

Krein [4,5], and others (see, e.g., [6], section III.7 for an overview). In addition, three different methods
to solve the problem have been worked out, based on the integral equations by Gel

′
fand–Levitan [3],

Marchenko [2], and Krein [5].
The solution of the inverse scattering problem on the full line (−∞ < x < ∞) is a more challenging

problem, which was first addressed by Kay [7], Kay and Moses [8], and a few years later in a series
of papers by Faddeev [9–12]. These fundamental studies provide a full description of the solution
procedure, while the correct necessary and sufficient criteria for the uniqueness of the solution were given by
Marchenko (see [13], section III.5). These criteria apply to the following pair of integral equations [8,12,13]:

K1(x,y)+A1(x+ y)+
∞∫

x

A1(z+ y)K1(x,z)dz = 0, (2)

K2(x,y)+A2(x+ y)+
x∫

−∞

A2(z+ y)K2(x,z)dz = 0, (3)

which are formally very similar to the Marchenko equation on the half line (see [13], p. 218). On the other
hand, their operator-theoretical content is closer to the Gel

′
fand–Levitan approach. Therefore, as a kind of

compromise, Eqs (2)–(3) are often called Gel
′
fand–Levitan–Marchenko (GLM) equations. The kernel A1

in Eq. (2) (where y > x) is completely specified by the so-called right scattering data, while the kernel A2
in Eq. (3) (y < x) is determined by the left scattering data. These two sets of input data are equivalent: the
left data are uniquely determined by the right ones and vice versa. In the following analysis we will rely on
Eq. (2). If one is able to solve this integral equation, then the potential is given by

V (x) =−2C
dK1(x,x)

dx
. (4)

Now, let us briefly discuss Problem 3 in the above list. Unfortunately, the criteria for the uniqueness
of the solution are so strict that it is nearly impossible to get all the necessary input data experimentally.
However, if one sets an additional constraint that the resulting potential must be reflectionless, the inverse
scattering problem can be solved much more easily. Moreover, a symmetric reflectionless potential is
uniquely determined if its full spectrum of bound states is known. In the following analysis it is assumed
that the potential V (x) that corresponds to Eq. (4) is reflectionless by definition.

As the general principles of building confining reflectionless potentials are long known [12,14], a natural
question arises: is there any need to revisit the topic? A motivation comes from Problem 4 stated above:
if the total number of bound states is large, the technical side of the procedure becomes important. This
in turn motivates the development of more efficient algorithms. In this paper, an easily applicable analytic
algorithm is derived, which enables us to calculate a reflectionless potential with an arbitrary number (N) of
bound states.

The paper is organized as follows. In Section 2, the general principles are briefly described, which form
the overall basis for the approach. Sections 3 and 4 make an excursion to the theory of determinants, the
benefits of which are described and illustrated in Section 5. Finally, Section 6 concludes the work.
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2. RECONSTRUCTION OF REFLECTIONLESSS POTENTIALS: UNIVERSAL RECIPE

Suppose we are given 2N parameters for an unknown reflectionless potential V (x): the positions of N
discrete energy levels En = −Cκ2

n and N norming constants Cn (n = 1,2, ...,N) for the Jost solution
Ψ1(iκn,x) of Eq. (1), so that Ψ1(iκn,x)→ exp(−κnx) as x →+∞, and

∞∫
−∞

Ψ2
n(x)dx = 1, Ψn ≡CnΨ1(iκn,x). (5)

Then it can be shown [14] that

Ψn(x) =− 1
Λn(x)

det
[
A(n)

]
det(A)

. (6)

Here A is a symmetric matrix with the following elements:

Amn = δmn +
Λm(x)Λn(x)

κm +κn
, (7)

A(n) is obtained from A by replacing the nth column with its derivative, and

Λn(x)≡Cn exp(−κn x). (8)

A simple formula can also be obtained for the potential [12,14]:

V (x) =−2C
d2

dx2 {ln [det(A)]} , (9)

which is uniquely determined by parameters κn and Cn.
In principle, using Eqs (7)–(9), one can reconstruct any reflectionlesss potential with given discrete

energy levels and norming constants. In practice, however, the direct use of Eq. (9) is only justified if det(A)
can be easily calculated, which means that N must not be very large (N ≤ 3). With increasing N the problem
becomes more and more troublesome, because the expansion of det(A) contains N! terms. For example,
if N = 10, there would be 10! = 3 628 800 terms, which means that ascertaining the potential is not at all
trivial. Fortunately, as will be demonstrated in the forthcoming sections, there is no need to explicitly use
Eq. (9). This general formula can be essentially simplified, so that the corresponding modified expansion
will contain only 2N−1 terms.

Note that the potential remains unchanged if det(A) is multiplied by a function exp(αx+β ), where α
and β are arbitrary constants. Consequently, we can multiply, for example, any row of the initial matrix by
a function exp [κn(x− xn)] (n = 1,2, ...,N), where xn are new parameters, equivalent to norming constants:

exp(2κnxn)≡
C2

n

2κn
, (10)

and thus, according to definition (8),

Λ2
n(x)

2κn
= exp [−2κn(x− xn)] . (11)

As a result, we get another matrix which contains full information for reconstructing the potential according
to Eq. (9):

ÃN = B̃N +C̃N , V (x) =−2C
d2

dx2

{
ln
[
det(ÃN)

]}
. (12)
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Here

B̃N ≡


eκ1(x−x1) 0 ... 0

0 eκ2(x−x2) ... 0
0 ... ... ...

0 ... ... eκN(x−xN)

 (13)

and

C̃N ≡



e−κ1(x−x1)
2
√

κ1κ2

κ1 +κ2
e−κ2(x−x2) ...

2
√

κ1κN

κ1 +κN
e−κn(x−xN)

2
√

κ1κ2

κ1 +κ2
e−κ1(x−x1) e−κ2(x−x2) ...

2
√

κ2κN

κ2 +κN
e−κn(x−xN)

... ... ... ...

2
√

κ1κN

κ1 +κN
e−κ1(x−x1)

2
√

κ2κN

κ2 +κN
e−κ2(x−x2) ... e−κN(x−xN)


. (14)

Remark. A subscript was added to denote the number of the bound states (and the rank of the matrix).

From now on, the determinants having the structure det(A) ·exp(αx+β ) with the elements Amn defined
in Eq. (7) will be sometimes called τ-functions (as is common in soliton theory). In the next two sections it
will be shown that such determinants can be easily calculated even for an arbitrarily large N.

3. GENERAL FORMULA FOR THE τ-FUNCTIONS

To evaluate a non-trivial determinant, one can use the Laplace expansion (see [15], p. 487) in terms of
the fixed row (or column) indices. For example, choosing a set of indices m1, m2, ...,mk for an arbitrary
N ×N-matrix AN , so that 1 ≤ m1 < m2 < ...≤ N, we get

det(AN) = ∑
1≤n1...≤N

detA(m1m2...mk|n1n2...nk) ·det Â(m1m2...mk|n1n2...nk). (15)

Here A(m1m2...mk|n1n2...nk) is a k× k-submatrix of AN that lies on the intersection of rows m1, m2, ...,mk
and columns n1, n2, ...,nk, while

det Â(m1m2...mk|n1n2...nk) = (−1)m1+...+mk+n1...+nk M (m1m2...mk|n1n2...nk),

and M (m1m2...mk|n1n2...nk) is a minor obtained from det(AN) by deleting rows m1, m2, ...,mk and columns
n1, n2, ...,nk.

Consequently, applying Eq. (15) to the τ-function defined by Eqs (12)–(14) yields

τN ≡det
(
ÃN

)
= a0 exp(α0)

+
N

∑
i=1

ai exp(αi)+ ∑
1≤i< j≤N

ai j exp(αi j)+ ∑
1≤i< j<k≤N

ai jk exp(αi jk)+ ...+a123...N exp(α123...N), (16)

where the coefficients a0, ai, ai j, ai jk,... as well as the corresponding arguments of the exponents can be
easily fixed with the help of Eqs (12)–(14). Indeed,

α0 =
N

∑
l=1

κl(x− xl), αi =
N

∑
l=1

(−1)δil κl(x− xl), αi j =
N

∑
m=1

(−1)δim+δ jmκm(x− xm),

αi jk =
N

∑
n=1

(−1)δin+δ jn+δknκn(x− xn), ...,α123...N =
N

∑
n=1

(−1)δ1n+δ2n+...δNnκn(x− xn) =−α0,

(17)

δil being the Kronecker symbol.
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To further simplify Eq. (16), let us group the terms into pairs, so that the arguments of the corresponding
exponents differ only by sign. For example, the first pair is formed of the terms with coefficients a0 = 1 and

a123...N ≡ A2
0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
√

κ1κ2

κ1 +κ2
...

2
√

κ1κN

κ1 +κN

2
√

κ1κ2

κ1 +κ2
1 ...

2
√

κ2κN

κ2 +κN

... ... ... ...

2
√

κ1κN

κ1 +κN

2
√

κ2κN

κ2 +κN
... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that
det

(
B̃N

)
= a0 exp(α0), det

(
C̃N

)
= a123...N exp(−α0).

Here we defined a new coefficient A0, whose subscript “0” emphasizes that the expression −α0 =−κ1(x−
x1)−κ2(x−x2)− ...−κN(x−xN) contains no terms (0 terms) with plus sign. The same logic can be applied
to all terms of Eq. (16). For example, the appropriate partner for the term a1 exp(α1) is a234...N exp(−α1),
where

a1 = 1, a234...N ≡ A2
1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
√

κ2κ3

κ2 +κ3
...

2
√

κ2κN

κ2 +κN

2
√

κ2κ3

κ2 +κ3
1 ...

2
√

κ3κN

κ3 +κN

... ... ... ...

2
√

κ2κN

κ2 +κN

2
√

κ3κN

κ3 +κN
... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Analogously, we can form a pair from a12 exp(α12) and a345...N exp(−α12), where

a12 =

∣∣∣∣∣∣∣∣∣
1

2
√

κ1κ2

κ1 +κ2

2
√

κ1κ2

κ1 +κ2
1

∣∣∣∣∣∣∣∣∣ , a345...N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
√

κ3κ4

κ3 +κ4
...

2
√

κ3κN

κ3 +κN

2
√

κ3κ4

κ3 +κ4
1 ...

2
√

κ4κN

κ4 +κN

... ... ... ...

2
√

κ3κN

κ3 +κN

2
√

κ4κN

κ4 +κN
... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The principle is simple: the terms an1n2...ni exp(αn1n2...ni) and ani+1ni+2...nN exp(−αn1n2...ni) are the partners in
the sense explained above. In addition, as we will see below, it is convenient to define a relevant coefficient

A2
n1n2...ni

≡ an1n2...ni ×ani+1ni+2...nN , (18)

where the indices point at the terms with the plus sign on the right side of the expression

−αn1...ni = κn1(x− xn1)+ ...+κni(x− xni)−κni+1(x− xni+1)− ... . (19)
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Looking at the structure of the matrix ÃN (see Eqs (12)–(14)), it is obvious that all these plus sign terms can
only originate from the expansion of det

(
B̃N

)
and they correspond to the product (B̃N)n1n1 ×(B̃N)n2n2 × ...×

(B̃N)nini . The terms with minus sign on the right side of Eq. (19) are related to the expansion of det
(
C̃N

)
,

without any contribution from det
(
B̃N

)
.

On the basis of the above arguments, the following conclusions can be made:
• All terms on the right side of Eq. (16) can be grouped into pairs. There is only one term, a123...N exp =

(−α0)det
(
C̃N

)
(with partner det

(
B̃N

)
= a0 exp(α0)) which is entirely formed of the elements of the

matrix C̃N . Any other term (both partners) contains some diagonal elements of the matrix B̃N as well.
• Any term an1n2...ni exp(αn1n2...ni) (i = 1,2, ...) can be obtained by replacing all elements of the rows and

columns ni+1,ni+2, ...,nN of the matrix C̃N with the corresponding elements of the matrix B̃N (mostly
with zeros). As a result, one gets a modified matrix ĈN , while an1n2...ni exp(αn1n2...ni) = det

(
ĈN

)
. The

Laplace expansion (15) of this determinant for the fixed rows ni+1,ni+2, ...,nN contains only one term!
• For any term an1n2...ni exp(αn1n2...ni) of the expansion (16) there is a partner

ani+1ni+2...nN exp(−αn1n2...ni) = det
(
CN

)
,

where CN can be obtained by replacing all elements of the rows and columns n1,n2, ...,ni of the matrix
C̃N with the corresponding elements of the matrix B̃N . The Laplace expansion of det

(
CN

)
for the rows

n1,n2, ...,ni also contains only one term:

det
(
CN

)
= exp(−α12...i)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
√κni+1κni+2

κni+1 +κni+2

...
2
√κni+1κnN

κni+1+κnN

2
√κni+1κni+2

κni+1 +κni+2

1 ...
2
√κni+2κnN

κni+2+κnN

... ... ... ...

2
√κni+1κnN

κni+1+κnN

2
√

κni+2 κnN

κni+2+κnN
... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It means, for example, that

A2
12...i = a12...i ×ai+1,i+2,...N

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
√

κ1κ2

κ1 +κ2
...

2
√

κ1κi

κ1 +κi

2
√

κ1κ2

κ1 +κ2
1 ...

2
√

κ2κi

κ2 +κi

... ... ... ...
2
√

κ1κi

κ1 +κi

2
√

κ2κi

κ2 +κi
... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
√κi+1κi+2

κi+1 +κi+2
...

2
√κi+1κN

κi+1 +κN

2
√κi+1κi+2

κi+1 +κi+2
1 ...

2
√κni+2κnN

κni+2+κnN

... ... ... ...

2
√κi+1κN

κi+1 +κN

2
√κni+2κnN

κni+2+κnN

... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (20)

• One should avoid re-use of the terms: an already existing pair must not be included again! It means
that the members of the modified expansion (16) are identified by no more than [N/2] indices (square
brackets denote the integer part of N/2). It is convenient to group the members on the basis of the
number of indices, so that there will be 0,1,2, ..., [N/2] different indices.
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As the final result of the above analysis, we get the following general formula:

τN =det
(
ÃN

)
=

N

∑
i=0

Ai [exp(αi +βi)+ exp(−αi −βi)]

+ ...+ ∑
1≤i1<...<i[N/2]≤N

Ai1...i[N/2] [exp(αi1...i[N/2] +βi1...i[N/2])+ exp(−αi1..i[N/2] −βi1...i[N/2])]

=
N

∑
i=0

2Ai cosh(αi +βi)+ ∑
1≤i1<i2≤N

2Ai1i2 cosh(αi1i2 +βi1i2)

+ ...+ ∑
1≤i1<...<i[N/2]≤N

2Ai1i2...i[N/2] cosh(αi1i2...i[N/2] +βi1i2...i[N/2]), (21)

where
exp(βn1n2...ni)≡

an1n2...ni

ani+1ni+2...nN

. (22)

It is easy to be convinced that the expansion (21) contains exactly 2N−1 terms in total (apart from
inessential factor 2). Indeed, there are N + 1 = CN

0 +CN
1 terms with just one index and CN

k different terms
with k > 1 indices (i1i2...ik), while

CN
0 +CN

1 +CN
2 +CN

3 + ...+CN
[N/2] =

(1+1)N

2
= 2N−1, CN

k ≡ N!
(N − k)!k!

,

according to Newton’s binomial theorem. Here we took into consideration that only half of this formal
series is actually needed.

4. ALTERNANTS OF τ-FUNCTIONS

We have shown that not only det
(
ÃN

)
itself but also the coefficients Ai, Ai1i2 ,..., Ai1i2...i[N/2] in the

expansion (21) are τ-functions. Consequently, the solution of the inverse scattering problem has been
reduced to evaluating a number of determinants

D(κ1,κ2, ..,κn)≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
√

κ1κ2

κ1 +κ2
...

2
√

κ1κn

κ1 +κn

2
√

κ1κ2

κ1 +κ2
1 ...

2
√

κ2κn

κ2 +κn

... ... ... ...
2
√

κ1κn

κ1 +κn

2
√

κ2κn

κ2 +κn
... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (23)

fixed by the parameters κ1 < κ2 < ... < κn, with n being an appropriate natural number. We are now going
to derive a simple formula for calculating such τ-functions. First, let us set a one-to-one correspondence
between each row of the determinant and a fixed parameter

qi =
√

κi (i = 1,2, ...,n) . (24)

For example, the modified elements of the first row of Eq. (23) will be

1 =
2q1

√
κ1

q2
1 +κ1

,
2
√

κ1κ2

κ1 +κ2
=

2q1
√

κ2

q2
1 +κ2

, ...,
2
√

κ1κn

κ1 +κn
=

2q1
√

κn

q2
1 +κn

.
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The usefulness of this trick soon becomes evident, although there seems to be only a formal change:

D(κ1,κ2, ..,κn) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2q1
√

κ1

q2
1 +κ1

2q1
√

κ2

q2
1 +κ2

...
2q1

√
κn

q2
1 +κn

2q2
√

κ1

q2
2 +κ1

2q2
√

κ2

q2
2 +κ2

...
2q2

√
κn

q2
2 +κn

... ... ... ...
2qn

√
κ1

q2
n +κ1

2qn
√

κ2

q2
n +κ2

...
2qn

√
κn

q2
n +κn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2n ·κ1κ2...κn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
q2

1 +κ1

1
q2

1 +κ2
...

1
q2

1 +κn

1
q2

2 +κ1

1
q2

2 +κ2
...

1
q2

2 +κn

... ... ... ...
1

q2
n +κ1

1
q2

n+κ2
...

1
q2

n +κn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (25)

Here we separated a factor 2qi from each row and
√

κi from each column, i.e., 2qi
√

κi = 2κi (i = 1,2, ...,n)
from each such pair.

Next, let us transform Eq. (25) into a polynomial, multiplying each row by ∏ j
(
q2

i +κ j
)
(i = 1,2, ...,n).

The result is
D(κ1,κ2, ..,κn) =

1

∏
1≤i< j≤n

(κi +κ j)
2 ×Dn, (26)

where a new determinant

Dn ≡

∣∣∣∣∣∣∣∣∣∣∣∣

∏
j ̸=1

(
q2

1 +κ j
)

∏
j ̸=2

(
q2

1 +κ j
)

... ∏
j ̸=n

(
q2

1 +κ j
)

∏
j ̸=1

(
q2

2 +κ j
)

∏
j ̸=2

(
q2

2 +κ j
)

... ∏
j ̸=n

(
q2

2 +κ j
)

... ... ... ...

∏
j ̸=1

(
q2

n +κ j
)

∏
j ̸=2

(
q2

n +κ j
)

... ∏
j ̸=n

(
q2

n +κ j
)

∣∣∣∣∣∣∣∣∣∣∣∣
(27)

was introduced. As can be seen, the factor 2n ·κ1κ2...κn was cancelled out from Eq. (26).
We can see that the elements of the columns of Dn correspond to different values of the same function,

while any row is characterized by a single fixed parameter. Indeed, Eq. (27) can be expressed as

Dn =

∣∣∣∣∣∣∣∣
F1(q1) F2(q1) ... Fn(q1)
F1(q2) F2(q2) ... Fn(q2)
... ... ... ...

F1(qn) F2(qn) ... Fn(qn)

∣∣∣∣∣∣∣∣ , (28)

where
F1(x)≡

(
x2 +κ2

)(
x2 +κ3

)
...
(
x2 +κn

)
,

F2(x)≡
(
x2 +κ1

)(
x2 +κ3

)
...
(
x2 +κn

)
,

F3(x)≡
(
x2 +κ1

)(
x2 +κ2

)(
x2 +κ4

)
...
(
x2 +κn

)
,

...
Fn(x)≡

(
x2 +κ1

)(
x2 +κ2

)(
x2 +κ3

)
...
(
x2 +κn−1

)
.

(29)
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A determinant that has a structure of Eq. (28) is called alternant (see [16], p. 161). The best-known alternant
is Vandermonde’s determinant (for the same set of variables)

Vn ≡

∣∣∣∣∣∣∣∣∣∣
1 q1 q2

1 ... qn−1
1

1 q2 q2
2 ... qn−1

2
... ... ... ... ...
1 qn−1 q2

n−1 ... qn−1
n−1

1 qn q2
n ... qn−1

n

∣∣∣∣∣∣∣∣∣∣
, (30)

which can be easily evaluated (see [17], p. 16):

Vn(q1,q2, ...,qn) = ∏
1≤i< j≤n

(q j −qi) . (31)

An important point is that the factor Vn(q1,q2, ...,qn) can be separated from any nth-order alternant. Indeed,
the argument qn may only appear in the nth row of Eq. (28): if we put it into any other row, the determinant
would be identically zero. It means that Dn has a factor ∏n−1

i=1 (qn −qi) . Analogous reasoning applied to qn−1

shows that Dn also has a factor ∏n−2
i=1 (qn−1 −qi), etc. Putting it all together, we conclude that an nth-order

alternant always has a factor Vn(q1,q2, ...,qn).
To continue the analysis, let us recall some useful properties of the elementary symmetric functions:

σ0 ≡ 1,
σ1 ≡ q1 +q2 + ...+qn,

...
σk ≡ ∑

1≤i1<i2···<ik≤n
qi1qi2 · · · qik ,

...
σn ≡ q1q2 · · · qn.

(32)

Here σk (k ≥ 2) is the sum of all possible products of exactly k variables arranged in the ascending order
of their indices. According to the Fundamental Theorem for symmetric polynomials (see [18], p. 312), any
such polynomial can be uniquely expressed as a polynomial in σ1,σ2, ...,σn. This in turn is a basis for the
following important theorem:

Theorem 1. Let |An| be an nth-order alternant generated by the functions

Fj(x) = a0 j +a1 j · x+a2 j · x2 + ...+an j · xn, j = 1,2, ...,n, (33)

where the parameters ai j do not depend on x, and define

Sk ≡ (−1)k σk(q1,q2, ...,qn). (34)

Then

|An|
Vn(q1,q2, ...,qn)

=

∣∣∣∣∣∣∣∣∣∣
a01 a11 a21 ... an1
a02 a12 a22 ... an2
... ... ... ... ...
a0n a1n a2n ... ann
Sn Sn−1 Sn−2 ... S0

∣∣∣∣∣∣∣∣∣∣
≡ ∆n+1. (35)

Proof. Let us introduce an auxiliary polynomial

F(x)≡ (x−q1)(x−q2)...(x−qn) (36)
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and form an (n+1)th-order Vandermonde’s determinant, adding a new (arbitrary) variable qn+1, so that

Vn+1(q1,q2, ...,qn,qn+1) =

∣∣∣∣∣∣∣∣∣∣
1 1 ... 1 1
q1 q2 ... qn qn+1
... ... ... ... ...

qn−1
1 qn−1

2 ... qn−1
n qn−1

n+1
qn

1 qn
2 ... qn

n qn
n+1

∣∣∣∣∣∣∣∣∣∣
(compared with Eq. (30), the row and column indices are interchanged). Multiplying ∆n+1 by Vn+1 and
using Eqs (33), (34), (36), we get

∆n+1 ×Vn+1 =

∣∣∣∣∣∣∣∣∣∣
F1(q1) F1(q2) ... F1(qn) F1(qn+1)
F2(q1) F2(q2) ... F2(qn) F2(qn+1)
... ... ... ... ...

Fn(q1) Fn(q2) ... Fn(qn) Fn(qn+1)
F(q1) F(q2) ... F(qn) F(qn+1)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
F1(q1) F1(q2) ... F1(qn) F1(qn+1)
F2(q1) F2(q2) ... F2(qn) F2(qn+1)
... ... ... ... ...

Fn(q1) Fn(q2) ... Fn(qn) Fn(qn+1)
0 0 ... 0 F(qn+1)

∣∣∣∣∣∣∣∣∣∣
or, in a more compact form,

∆n+1 ×Vn+1 = (qn+1 −q1)...(qn+1 −qn)×|An| , (37)

where we took into consideration that F(qi) = 0 if i = 1,2, ...,n.
From Eq. (31) one concludes that

Vn+1 = (qn+1 −q1)(qn+1 −q2)...(qn+1 −qn) ·Vn,

so that both sides of Eq. (37) contain a common divisor (qn+1 − q1)(qn+1 − q2)...(qn+1 − qn) ̸= 0.
Consequently, ∆n+1Vn = |An|, q.e.d.

4.1. Relationship to the inverse scattering problem

Let us apply Theorem 1 to the alternant (28) generated by the functions (29), which are polynomials in a
variable x2. Using Eqs (33) and (34), one gets

a01 = σn−1(κ2,κ3, ...,κn),

a11 = σn−2(κ2,κ3, ...,κn), ...,an−1,1 = 1, an1 = 0,
a02 = σn−1(κ1,κ3, ...,κn),

a12 = σn−2(κ1,κ3, ...,κn), ...,an−1,2 = 1, an2 = 0,
...

a0n = σn−1(κ1,κ2, ...,κn−1),

a1n = σn−2(κ1,κ2, ...,κn−1), ...,an−1,n = 1, ann = 0.
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Consequently,

Dn = Vn(q1,q2, ...,qn)×|Rn| , (38)

|Rn| ≡

∣∣∣∣∣∣∣∣∣∣
σn−1(κ2,κ3, ...,κn) σn−2(κ2,κ3, ...,κn) ... 1 0
σn−1(κ1,κ3, ...,κn) σn−2(κ1,κ3, ...,κn) ... 1 0

... ... ... ... ...
σn−1(κ1,κ2, ...,κn−1) σn−2(κ1,κ2, ...,κn−1) ... 1 0

Sn Sn−1 ... S1 S0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
σn−1(κ2,κ3, ...,κn) σn−2(κ2,κ3, ...,κn) ... 1
σn−1(κ1,κ3, ...,κn) σn−2(κ1,κ3, ...,κn) ... 1

... ... ... ...
σn−1(κ1,κ2, ...,κn−1) σn−2(κ1,κ2, ...,κn−1) ... 1

∣∣∣∣∣∣∣∣ .

Here we defined a new determinant |Rn| which seems to be another alternant, so we can apply Theorem 1
to evaluate it. To be convinced that |Rn| is indeed an alternant, we have to specify the generating functions.
Obviously,

Fn(x) = 1 = σ0(κ1,κ2, ...,κn), Fn−1(x) = σ1(κ1,κ2, ...,κn)− x. (39)

Also, it is easy to prove that

Fn−2(x) = σ2 − xFn−1(x) = σ2 −σ1x+ x2, (40)

where we dropped the arguments to get a more compact formula. Let us agree that if no arguments are
explicitly given, the corresponding function depends on n arguments: κ1,κ2, ...,κn. Taking, e.g., x = κ1, we
can check the validity of Eq. (40). Indeed,

Fn−2(κ1) = σ2 −σ1κ1 +κ2
1

= ∑
1≤i1<i2≤n

(κi1κi2)−κ1 (κ1 +κ2 + ...+κn)+κ2
1 = σn−1(κ2,κ3, ...,κn),

as needed according to Eq. (38). Continuing in the same manner, we get the following result:

Fn−3(x) = σ3 − xFn−2(x) = σ3 −σ2x+σ1x2 − x3,

...

Fn−i(x) = σn−i − xFn−i−1(x) =
i

∑
j=0

(−1) jσi− jx j →

Fk(x) =
n−k

∑
j=0

(−1) jσn−k− jx j =
n−k

∑
j=0

a jkx j, (41)

a jk =

{
(−1) jσn−k− j, j ≤ n− k,
0, j > n− k. (42)
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Thus |Rn| is indeed an alternant with generating functions (33). Consequently, according to Eqs (34), (35),
and (42),

|Rn|
Vn

=

∣∣∣∣∣∣∣∣∣∣
a01 a11 a21 ... an1
a02 a12 a22 ... an2
... ... ... ... ...
a0n a1n a2n ... ann
Sn Sn−1 Sn−2 ... S0

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σn−1 −σn−2 σn−3 ... (−1)n−2 σ1 (−1)n−1 0
σn−2 −σn−3 σn−4 ... (−1)n−2 0 0
σn−3 −σn−4 σn−5 ... 0 0 0
... ... ... ... 0 0 0
σ1 −1 0 ... 0 0 0
1 0 0 ... 0 0 0

(−1)n σn (−1)n−1 σn−1 (−1)n−1 σn−2 ... σ2 −σ1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

σn−1 −σn−2 σn−3 ... (−1)n−2 σ1 (−1)n−1

σn−2 −σn−3 σn−4 ... (−1)n−2 0
σn−3 −σn−4 σn−5 ... 0 0
... ... ... ... 0 0
σ1 −1 0 ... 0 0
1 0 0 ... 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
, (43)

which means that
|Rn|
Vn

= 1. (44)

Indeed, we can transform Eq. (43), repeatedly using cofactor expansion in terms of the last column and
applying the general definition

det(A) = ∑
p

σ(p)a1p1a2p2 ...anpn . (45)

Here the sum involves all possible permutations p = (p1, p2, ..., pn) of indices (1,2, ...,n), σ(p) = (−1)Np

and Np is the number of pairwise interchanges needed to restore the natural order (1,2, ...,n). For example,
σ (3,2,1) =−1, but σ (4,3,2,1) = 1. As a result of the described operation, we obtain

|Rn|
Vn

= σ(n,n−1, ...,1) · (−1)[n/2].

On the other hand, σ(n,n−1, ...,1) = (−1)[n/2], since Np = [n/2]. Consequently,

|Rn|=Vn · (−1)[n/2] · (−1)[n/2] =Vn.

In summary, we have obtained a very simple and universal recipe for calculating determinants defined
by Eq. (27):

Dn = (Vn)
2 = ∏

1≤i< j≤n
(κ j −κi)

2 . (46)

Combining Eqs (26) and (46), we can formulate a general and important result:

Theorem 2. Let κ1,κ2, ..,κn be arbitrary positive real numbers arranged in the ascending order, so that
κ1 < κ2 < ... < κn, and let D(κ1,κ2, ..,κn) be a determinant, defined by Eq. (23). Then

D(κ1,κ2, ..,κn) = ∏
1≤i< j≤n

(
κ j −κi

κ j +κi

)2

, (47)
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where the product contains all possible combinations of the pairs (κ j,κi) satisfying the condition 1 ≤ i <
j ≤ n.

5. SYMMETRIC REFLECTIONLESS POTENTIALS

The excursion to theory of determinants concluded with a surprisingly simple final result. Indeed, as is seen
from Eqs (18), (20), and (22), all coefficients in Eq. (21) can be evaluated with the help of Eq. (47), which
means that the general formula for τ-functions can be essentially simplified. For example,

A0 =
√

D(κ1,κ2, ..,κn) = ∏
1≤i< j≤n

(
κ j −κi

κ j +κi

)
, (48)

Ai

A0
=

√
D(κ1,κ2, ..,κi−1κi+1κi+2...κn)

D(κ1,κ2, ..,κn)
= ∏

j ̸=i

∣∣∣∣κ j +κi

κ j −κi

∣∣∣∣ , (49)

etc. Thus Eq. (21) transforms to

τN =
det

(
ÃN

)
2A0

= cosh(α0 +β0)+∑
i

∏
j ̸=i

∣∣∣∣κ j +κi

κ j −κi

∣∣∣∣cosh(αi +βi)

+ ∑
1≤i1<i2≤N

∏
j ̸=i1,i2

∣∣∣∣κ j +κi1

κ j −κi1

∣∣∣∣ · ∣∣∣∣κ j +κi2

κ j −κi2

∣∣∣∣cosh(αi1i2 +βi1i2)

+ ...+ ∑
1≤i1...<i[N/2]≤N

∏
j ̸=i1,i2,...,i[N/2]

∣∣∣∣κ j +κi1

κ j −κi1

∣∣∣∣ · ∣∣∣∣κ j +κi2

κ j −κi2

∣∣∣∣ ...
∣∣∣∣∣κ j +κi[N/2]

κ j −κi[N/2]

∣∣∣∣∣cosh(αi1...i[N/2] +βi1...i[N/2]),

(50)

and Eq. (12) can be rewritten as

V (x) =−2C
d2

dx2 {lnτN(x)} . (51)

Equations (50)–(51) express the main result of this paper.
In general, as mentioned, the reflectionless potential is uniquely determined if 2N parameters κn and Cn

(n = 1,2, ...,N) are known. However, if one sets an additional constraint

V (−x) =V (x),

the number of necessary input parameters is twofold reduced. In other words, a symmetric reflectionless
potential is uniquely determined by its N binding energies [19] En = −Cκ2

n . Let us analyse this in more
detail.

Obviously, Eq. (50) can only be symmetric if the arguments of all cosh functions are of the linear form
ax+b with b ≡ 0. It means, for example, that

N

∑
i=1

κi xi = β0 = ∑
1≤i< j≤N

ci j, (52)

κ1 x1 −κ2 x2 − ...−κN xN = 2κ1 x1 −β0 =−β1 =
N

∑
j=2

c1 j −β0, (53)

where

ci j ≡ ln
∣∣∣∣κ j +κi

κ j −κi

∣∣∣∣ , (54)
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and consequently,

2κ1 x1 =
N

∑
j=2

c1 j.

Using Eqs (17) and Eq. (22), we get a similar expression for any other combination κi xi. From Eqs (10) and
(54) we therefore obtain the following symmetricity conditions:

exp(2κi xi) =
C2

i

2κn
=

N

∏
j ̸=i

∣∣∣∣κ j +κi

κ j −κi

∣∣∣∣ , i = 1,2, ...,N ≥ 2. (55)

If N = 1, then

exp(2κ1 x1) =
C2

1
2κ1

= 1. (56)

It can be easily shown that Eqs (55) are indeed the symmetricity conditions for τN and V (x). To this
end, in full analogy with Eq. (53), we can write

κ1 x1 −κ2 x2 − ...−κN xN =
N
∑
j ̸=1

c1 j −β0,

−κ1 x1 +κ2 x2 − ...−κN xN =
N
∑
j ̸=2

c2 j −β0,

...

−κ1 x1 +κ2 x2 − ...+κN xN =
N
∑

j ̸=N
cN j −β0.

(57)

Summing these equations, we get

−(N −2)
N

∑
i=1

κi xi =−(N −2)β0,

which coincides with Eq. (52).

Remark. If N = 2, then the first two equations of the system (57) are not linearly independent, since

β1 = β0 −
N

∑
j ̸=1

c1 j = β0 −
N

∑
j ̸=2

c2 j = β2 = 0,

so that κ1 x1 = κ2 x2. Consequently, in this (and only in this) special case Eqs (52)–(53) must be treated as
the actual symmetricity conditions, while Eq. (55) still remains valid.

The next step is to complement Eq. (57), for example, with another condition

2(κ1 x1 +κ2 x2) =
N

∑
j ̸=1

c1 j +
N

∑
j ̸=2

c2 j, (58)

which is a direct conclusion from Eq. (55). Thus

2(κ1 x1 +κ2 x2)−
N

∑
i=1

κi xi = κ1 x1 +κ2 x2 −κ3 x3 − ...−κN xN

=
N

∑
j ̸=1

c1 j +
N

∑
j ̸=2

c2 j −β0 = β12,

which means that
cosh(α12 +β12) = cosh [(κ1 +κ2 −κ3 − ...−κN ) x]

is a symmetric function. Analogously, one can prove that any other term cosh(αi1i2...+βi1i2...) in Eq. (50) is a
symmetric function as well. This in turn proves that the norming constants Cn of a symmetric reflectionless
potential are uniquely determined by the given binding energies En.
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5.1. Some practical examples

To illustrate the results, let us take, for example, N = 4. Then Eq. (50) reads

T4 =cosh(α0 +β0)+

(
κ2 +κ1

κ2 −κ1

)(
κ3 +κ1

κ3 −κ1

)(
κ4 +κ1

κ4 −κ1

)
cosh(α1 +β1)

+

(
κ2 +κ1

κ2 −κ1

)(
κ3 +κ2

κ3 −κ2

)(
κ4 +κ2

κ4 −κ2

)
cosh(α2 +β2)+

(
κ3 +κ1

κ3 −κ1

)(
κ3 +κ2

κ3 −κ2

)
×
(

κ4 +κ3

κ4 −κ3

)
cosh(α3 +β3)+

(
κ4 +κ1

κ4 −κ1

)(
κ4 +κ2

κ4 −κ2

)(
κ4 +κ3

κ4 −κ3

)
cosh(α4 +β4)

+

(
κ3 +κ1

κ3 −κ1

)(
κ4 +κ1

κ4 −κ1

)(
κ3 +κ2

κ3 −κ2

)(
κ4 +κ2

κ4 −κ2

)
cosh(α12 +β12)

+

(
κ2 +κ1

κ2 −κ1

)(
κ4 +κ1

κ4 −κ1

)(
κ3 +κ2

κ3 −κ2

)(
κ4 +κ3

κ4 −κ3

)
cosh(α13 +β13)

+

(
κ2 +κ1

κ2 −κ1

)(
κ3 +κ1

κ3 −κ1

)(
κ4 +κ2

κ4 −κ2

)(
κ4 +κ3

κ4 −κ3

)
cosh(α14 +β14), (59)

while the symmetricity conditions, according to Eqs (53)–(55), can be given as

κ1x1 −κ2x2 −κ3x3 −κ4x4 =−β1 = ln
(

κ3 −κ2

κ3 +κ2
× κ4 −κ2

κ4 +κ2
× κ4 −κ3

κ4 +κ3

)
,

−κ1x1 +κ2x2 −κ3x3 −κ4x4 =−β2 = ln
(

κ3 −κ1

κ3 +κ1
× κ4 −κ1

κ4 +κ1
× κ4 −κ3

κ4 +κ3

)
,

−κ1x1 −κ2x2 +κ3x3 −κ4x4 =−β3 = ln
(

κ2 −κ1

κ2 +κ1
× κ4 −κ1

κ4 +κ1
× κ4 −κ2

κ4 +κ2

)
,

−κ1x1 −κ2x2 −κ3x3 +κ4x4 =−β4 = ln
(

κ2 −κ1

κ2 +κ1
× κ3 −κ1

κ3 +κ1
× κ3 −κ2

κ3 +κ2

)
.

(60)

Summing the corresponding sides of Eqs (60), we get

κ1x1 +κ2x2 +κ3x3 +κ4x4 +β0 = 0,

which means that

cosh(α0 +β0) = cosh [(κ1 +κ2 +κ3 +κ4)x]

is a symmetric function.
Analogously, subtracting the sides of the last two equations from the corresponding sides of the first two

equations of (60), we get

κ1x1 +κ2x2 −κ3x3 −κ4x4 +β12 = 0,

which means that cosh(α12 +β12) is a symmetric function. Continuing in a similar manner, it is easy to be
convinced that cosh(α13 +β13) and cosh(α14 +β14) are symmetric functions as well.

Example 1. To be more specific, let x0 = 1/κ1 be the length unit and E0 =Cκ2
1 , the energy unit (i.e., x0 = 1

and E0 = 1). The simplest and the best-known symmetric potential then corresponds to

κn = n, n = 1,2,3,4.
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Therefore, according to Eq. (59),

T4 =cosh [(κ1 +κ2 +κ3 +κ4)x]+
3 ·4 ·5
1 ·2 ·3

cosh [(κ1 −κ2 −κ3 −κ4)x]+
3 ·5 ·6
1 ·1 ·2

× cosh [(κ2 −κ1 −κ3 −κ4)x]+
4 ·5 ·7
2 ·1 ·1

cosh [(κ3 −κ1 −κ2 −κ4)x]+
5 ·6 ·7
3 ·2 ·1

× cosh [(κ4 −κ1 −κ2 −κ3)x]+
4 ·5 ·5 ·6
2 ·3 ·1 ·2

cosh [(κ1 +κ2 −κ3 −κ4)x]+
3 ·5 ·5 ·7
1 ·3 ·1 ·1

× cosh [(κ1 +κ3 −κ2 −κ4)x]+
3 ·4 ·6 ·7
1 ·2 ·2 ·1

cosh [(κ1 +κ4 −κ2 −κ3)x]

=cosh(10x)+10cosh(8x)+45cosh(6x)+120cosh(4x)+210cosh(2x)+126. (61)

At first sight Eq. (61) may seem impractical. However, using the standard transformation formulas
(obtained from the corresponding trigonometric formulas by replacing x → ix)

cosh(10x) = 512cosh10(x)−1280cosh8(x)+1120cosh6(x)−400cosh4(x)+50cosh2(x)−1,
cosh(8x) = 128cosh8(x)−256cosh6(x)+160cosh4(x)−32cosh2(x)+1,
cosh(6x) = 32cosh6(x)−48cosh4(x)+18cosh2(x)−1,
cosh(4x) = 8cosh4(x)−8cosh2(x)+1,
cosh(2x) = 2cosh2(x)−1,

the result is as follows:

T4 = 512cosh10(x).

Thus

[lnT4(x)]
′ =

T ′
4

T4
= 10tanh(x)

and

V (x) =− 20
cosh2(x)

=−N(N +1)
cosh2(x)

,

exactly as needed.

Example 2. Next, let us construct a reflectionless approximant to a symmetric rectangular potential with
four energy levels (see Fig. 1). These levels can be determined from (see, e.g., [20], Sec. II.9)

κi xi tan(κi xi) =

√
U0a2

C
− (κi xi)

2, (62)

− κi xi

tan(κi xi)
=

√
U0a2

C
− (κi xi)

2, (63)

where a and U0 denote the half-width and the depth of the potential well, respectively. Equation (62) fixes
the symmetric and (63) the antisymmetric solutions to the Schrödinger equation. Again, it is convenient to
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Fig. 1. The isospectral reflectionless approximant (dashed curve) to a symmetric rectangular potential (solid line). The common
energy levels are shown by horizontal dashed lines.

use dimensionless units for the length and energy, taking x0 = a = 1 and E0 =C/a2 = 1. In addition, let us
fix √

U0a2

C
= 5.

Then the system has four discrete levels (as assumed) corresponding to

κ1 = 1.3064400089, κ2 = 2.5957390789,
(64)

κ3 = 3.8374671080, κ4 = 4.9062951521.

In this case Eq. (59) cannot be further simplified, but this is not a serious problem. Indeed, let us define
the coefficients Ai and Bi such that

T4 = ∑
i

Ai cosh(Bi x).

Then the corresponding potential becomes

V (x) =−2C


∑
i

AiB2
i cosh(Bi x)

∑
i

Ai cosh(Bi x)
−

∑
i

AiBi sinh(Bi x)

∑
i

Ai cosh(Bi x)

2
 . (65)

The result for the input data (64) can be seen in Fig. 1.

Example 3. Figure 2 demonstrates two isospectral potentials corresponding to the following set of input
parameters:

κ1 = 1/8, κ2 = 3/8, κ3 = 5/8, κ4 = 7/8, (66)
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Fig. 2. The isospectral reflectionless substitute to a Morse potential (see the explanations to Example 3). The common energy
levels are shown by horizontal dashed lines.

the four energy levels being En = −Cκ2
n (n = 1,2,3,4) as previously. The solid curve in this figure

corresponds to a Morse potential [21]

V (x)
D

= exp
(
−2αx

x0

)
−2exp

(
−αx

x0

)
, (67)

taking x0 ≡
√

h̄2/(2mD) = 1, E0 = D = 1, and consequently, C = 1. The energy eigenvalues read

En =−D
(

1− n+1/2
a

)2

, (68)

where a ≡
√

D/C/α . In Fig. 2, the value a = 4 has been chosen so that α = 1/4 in our dimensionless
units. As in the previous example, the dashed curve shows the symmetric reflectionless potential derived by
Eq. (65) from the input parameters (66).

6. CONCLUSION

The main result of this work is a general formula for calculating τ-functions. This important formula,
Eq. (50), is a direct conclusion from Theorem 2 that has been proved with the help of well-known methods
of the theory of determinants. We demonstrated that τ-functions can be expanded in terms of special
determinants called alternants [16]. Any alternant has a divisor – the Vandermonde’s determinant of the same
order, while the quotient can be uniquely expressed as a polynomial in elementary symmetric functions (32)
(see Theorem 1). Moreover, in the case of alternants related to the inverse scattering problem this quotient
equals unity, i.e., the alternant itself equals the Vandermonde determinant. These useful properties of
alternants are the key to a very simple final result expressed by Eq. (50).

Using Eqs (50)–(51), one can reconstruct any reflectionless one-dimensional potential on the full line
(−∞ < x < ∞), provided that the 2N input parameters κn and Cn (n = 1,2, ...,N) are known. Moreover, if the
result is expected to be a symmetric function of the coordinate x, then the problem can be uniquely solved
on the basis of the N binding energies En = −Cκ2

n . Compared to the direct use of Eq. (9), the described
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approach significantly reduces computational efforts. Indeed, the expansions (21) and (50) contain only
2N−1 members, while Eq. (9) requires the evaluation of a determinant with N! members.

The efficiency of the method has been explicitly demonstrated for the case N = 4, and there is no doubt
that the algorithm can be successfully applied to a much higher number (in principle, to an arbitrary number)
of given binding energies. The described approach can also be applied to building N-soliton solutions to the
Korteweg–de Vries equation, but this would be a subject for another paper.
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Praktiline meetod etteantud energiaspektriga
mittepeegeldava potentsiaali konstrueerimiseks

Matti Selg

On kirjeldatud puhtalgebralist meetodit, mis võimaldab konstrueerida kuitahes suure hulga (N) etteantud
diskreetsete energianivoodega mittepeegeldava potentsiaali. Konstruktsiooni aluseks on üldine valem (va-
lem (9) selles artiklis), mis taandab potentsiaali konstrueerimise uuritava süsteemi jaoks iseloomuliku
N ×N-determinandi arvutamisele. Kuna taolise determinandi arendus sisaldab N! liiget, siis osutub üles-
anne üsna keerukaks juba suhteliselt väikese arvu nivoodega süsteemi (N > 3) jaoks. Seesuguste determi-
nantide arvutamist saab aga väga oluliselt lihtsustada, kuna need on avaldatavad spetsiifiliste omadustega
determinantide – alternantide – kaudu.

Artiklis on tõestatud kaks üldist teoreemi ja tuletatud lihtne ning kergesti kasutatatav valem alternantide
arvutamiseks. Kirjeldatud protseduuri tulemusena saadakse modifitseeritud determinant, mille arendus si-
saldab ainult 2N−1 liiget (vt valemeid (50)–(51)). Arvutustehnilises mõttes on see tohutu võit. Tõepoolest,
kui näiteks N = 10, siis on arenduses 10! = 3 628 800 asemel ainult 29 = 512 liiget, ja ka märksa suurema
nivoode arvu korral on arvutused tänapäevaste vahendite abil kergesti teostatavad.

Kui seada lisatingimus, et otsitav potentsiaal on reaalteljel (−∞,∞) sümmeetriline, lihtsustub probleem
veelgi. Sel juhul on potentsiaali kuju N energianivoo kaudu üheselt määratud (üldjuhul tuleb fikseerida 2N
parameetrit). Meetodi tõhusust sümmeetriliste potentsiaalide konstrueerimisel on mitme näite abil ka vahe-
tult demonstreeritud. Väärib märkimist, et töö tulemusi saab kasutada mitte ainult hajumisteooria pöörd-
ülesande kontekstis, vaid ka Kortewegi-de Vriesi võrrandi N-solitoni lahendite kindlakstegemiseks.


