
Proceedings of the Estonian Academy of Sciences,
2016, 65, 3, 205–219

doi: 10.3176/proc.2016.3.01
Available online at www.eap.ee/proceedings

On approximation by Blackman- and Rogosinski-type operators in
Banach space

Andi Kivinukk and Anna Saksa∗

School of Digital Technologies, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia

Received 30 June 2015, accepted 28 September 2015, available online 20 June 2016

c⃝ 2016 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Abstract. In this paper we introduce the Blackman- and Rogosinski-type approximation processes in an abstract Banach space
setting. Historical roots of these processes go back to W. W. Rogosinski in 1926. The new definitions given use the concept of
cosine operator functions. We proved that in the presented setting the Blackman- and Rogosinski-type operators possess the order
of approximation, which coincides with results known in trigonometric approximation. Applications for the Fourier–Chebyshev
approximation are given as well.
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1. INTRODUCTION

Let X be an arbitrary (real or complex) Banach space and [X ] be the Banach algebra of all bounded linear
operators U of X into itself. Let {Pk}∞

k=0 ⊂ [X ] be a given sequence of mutually orthogonal projections, i.e.
PjPk = δ jkPk (δ jk being the Kronecker symbol). Moreover, let us assume that the sequence of projections is
total, i.e. Pk f = 0 for all k = 0,1,2, ... implies f = 0, and fundamental, i.e. the linear span of

∪∞
k=0 Pk(X) is

dense in X . Then with each f ∈ X one may associate its unique Fourier series expansion

f ∼
∞

∑
k=0

Pk f

with the Fourier partial sums operator

Sn f =
n

∑
k=0

Pk f .

As we know from trigonometric Fourier approximation, the convergence of the Fourier partial sums is not
guaranteed for all f ∈ X . The improvement of that situation will be given by some matrix transformation
like

Un f =
n

∑
k=0

Θk(n)Pk f .
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In this paper we introduce the Blackman- and Rogosinski-type operators in an abstract setting
and find the order of approximation via a modulus of continuity (smoothness), which is defined by a
general translation operator. The Blackman- and Rogosinski-type operators are interesting, because in a
trigonometric case we are able to calculate precise values of their operator norms.

Definition 1. A cosine operator function Th ∈ [X ] (h ≥ 0) is defined by the following properties:
(i) T0 = I (identity operator),

(ii) Th1 ·Th2 =
1
2(Th1+h2 +T|h1−h2|),

(iii) ∥Th f∥ ≤ T∥ f∥, 0 < T− not depending on h > 0.

Remark 1. Let τh ∈ [X ], h ∈ R, be a translation operator, defined by the properties
(i) τ0 = I,

(ii) τh1 · τh2 = τh1+h2 ,
(iii) ∥τh f∥ ≤ T∥ f∥,0 < T− not depending on h ∈ R.
Then Th := 1

2(τh + τ−h), h ≥ 0, is a cosine operator function.

First let us consider some examples.

Classical trigonometric case. Let X =C2π be the space of 2π-periodic continuous functions and τh( f ,x) =
f (x+h), h ∈ R, which obviously forms a semigroup translation with T = 1. Then by Remark 1

Th( f ,x) =
1
2
( f (x+h)+ f (x−h)) , h ≥ 0 (1.1)

forms the cosine operator function.
It is well known that the Fourier partial sums operator

Sn( f ,x) =
a0

2
+

n

∑
k=1

(ak coskx+bk sinkx)

is translation invariant, i.e. Th(Sn f ,x) = Sn(Th f ,x). Moreover,

Th (Sn f ,x) =
a0

2
+

n

∑
k=1

coskh(ak coskx+bk sinkx) . (1.2)

π-Symmetric trigonometric case. Let X =C−
2π be the space of π-symmetric continuous functions, i.e. we

suppose that f (2π − x) = f (x) and f (4π + x) = f (x) for all x ∈ R. For example, the functions y = coskx,
y = sin(k + 1

2)x, k = 0,1,2, . . . belong to the space C−
2π . Since the system

{
coskx, sin(k+ 1

2)x
}∞

k=0 is
orthogonal on [−π,π] under a usual scalar product, we may consider the Fourier partial sums operator

S−n ( f ,x) =
n

∑
k=0

′
(

ak coskx+dk sin
(

k+
1
2

)
x
)
, (1.3)

where ∑ ′ means that the coefficient a0 is halved and

ak =
1
π

π∫
−π

f (t)cosktdt, dk =
1
π

π∫
−π

f (t)sin
(

k+
1
2

)
tdt.

If a function f ∈ C2π , it is obvious that τh f ∈ C2π as well. But it should be noted that the ordinary
translation operator τh( f ,x) = f (x+ h), h ∈ R, is not suitable for the π-symmetric functions, since, for
example, τh

(
sin
( 1

2◦
)
,x
)
= sin 1

2(x+ h) /∈ C−
2π for some h ∈ R. For the cosine operator function (1.1) we

state following
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Lemma 1. Let f ∈ C−
2π . Then for every h ≥ 0 the cosine operator function yields Th f ∈ C−

2π , where
Th := 1

2(τh + τ−h) and τh is the ordinary translation operator.

Proof. Consider f ∈ C−
2π , then for all h ≥ 0 the function Th f satisfies the conditions f (2π − x) = f (x) and

f (4π + x) = f (x). �
Analogously to the periodic case we have

Th
(
S−n f ,x

)
=

n

∑
k=0

′
(

ak coskhcoskx+dk cos
(

k+
1
2

)
hsin

(
k+

1
2

)
x
)
.

Fourier–Chebyshev series. For f ∈C[−1,1] let us consider the Fourier–Chebyshev partial sums operator

SC
n ( f ,x) = f̂C(0)+2

n

∑
k=1

f̂C(k)Tk(x),

where

f̂C(k) :=
1
π

1∫
−1

f (u)Tk(u)
du√

1−u2

is the kth Fourier–Chebyshev coefficient and Tk(u) = cos(k arccosu) is the kth Chebyshev polynomial. For
this case a suitable cosine operator function (see [1,3]) is

TC
h ( f ,x) :=

1
2

{
f (xcosh+

√
1− x2 sinh)+ f (xcosh−

√
1− x2 sinh)

}
, 0 ≤ h ≤ π. (1.4)

Since it can be verified that TC
h (Tk,x) = coskhTk(x), we have

TC
h (SC

n f ,x) = f̂C(0)+2
n

∑
k=1

coskh f̂C(k)Tk(x). (1.5)

The paper is organized as follows.
Section 2 is devoted to preliminary notions like the modulus of continuity and the best approximation,

but in an abstract setting using the cosine operator function. The main definitions of the Blackman- and
Rogosinski-type approximation operators are introduced.

Section 3 treats the order of approximation by the Blackman- and Rogosinski-type approximation
operators.

Section 4 concerns applications to the trigonometric approximation operators.
In Section 5 we consider a quite specific problem. Namely, it appears that the exact values of the operator

norms of the Blackman- and Rogosinski-type trigonometric approximation operators can be calculated.
In Section 6 we apply the previous results to the Fourier–Chebyshev series.

2. MODULUS OF CONTINUITY, THE BEST APPROXIMATIONS, AND BLACKMAN- AND
ROGOSINSKI-TYPE OPERATORS

In the present section we will define the Blackman- and Rogosinski-type approximation operators. The main
idea for definitions below was inspired from the trigonometric approximation (see [2,4,5,7] and references
cited there).

An abstract modulus of continuity, defined by the cosine operator function, will play an important role
in our paper.
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Definition 2. The modulus of continuity of order k is defined via the cosine operator function by

ωk( f ,δ ) := sup
0≤h6δ

∥(Th − I)k f∥, k ∈ N. (2.1)

Proposition 1. The modulus of continuity ωk( f ,δ ) (ω( f ,δ ) := ω1( f ,δ )) has the following properties:
(i) ω( f ,mδ )≤ m(1+(m−1)T )ω( f ,δ ), m ∈ N;

(ii) ω( f ,λδ )≤ ([λ ]+1)(1+[λ ]T )ω( f ,δ ), λ > 0, ([λ ]≤ λ is the entire part of λ ∈ R);
(iii) ωk( f ,δ )≤ (1+T )k−lωl( f ,δ ), k ≥ l and k, l ∈ N.

Remark 2. Let τh : X → X , h ∈R, be a translation operator and let us define another modulus of continuity
by

ω̃k( f ,δ ) := sup
0≤h≤δ

∥∥∥(τh/2 − τ−h/2
)k f
∥∥∥ , k ∈ N.

Then by Remark 1 Th := 1
2 (τh + τ−h) , h ≥ 0, defines the modulus of continuity ωk by (2.1). Since

Th − I = 1
2

(
τh/2 − τ−h/2

)2
, we have

ωk( f ,δ ) =
1
2k ω̃2k( f ,δ ). (2.2)

Another quantity we need is the best approximation.

Definition 3. Let us denote Xk := Pk(X) and Πn := X0+X1+ . . .+Xn = {∑n
k=0 αkPk f | αk ∈ R, f ∈ X} . Then

En( f ) := inf
pn∈Πn

∥ f − pn∥

is the best approximation of f ∈ X by polynomials pn ∈ Πn.

Remark 3. Usually we may assume that for each f ∈ X there exists p∗n ∈ Πn such that ∥ f − p∗n∥= En( f ).

Let us define the Rogosinski- and Blackman-type operators.

Definition 4. The Rogosinski-type operators Rn,h,a : X → X are defined via the Fourier partial sums and the
cosine operator function is defined by

Rn,h,a f := aTh(Sn f )+(1−a)T3h(Sn f ) (h ≥ 0,a ∈ R).

Remark 4. The case a = 1 leads to the original Rogosinski operator Rn,h : C2π →C2π which was introduced
by W. W. Rogosinski [5] in trigonometric approximation and was afterwards elaborated by S. B. Stechkin
in [6]; see also [2,7,8].

Definition 5. The Blackman-type operators Bn,h,a : X → X are defined via the Fourier partial sums and the
cosine operator function is defined by

Bn,h,a f := aSn f +
1
2

Th(Sn f )+
(

1
2
−a
)

T2h(Sn f ) (h ≥ 0,a ∈ R).

Remark 5. In Definition 5 the Blackman operator in the case a = 1
2 is called the Hann operator, denoted

here by Hn,h. If the Fourier partial sums operator is translation invariant, i.e. ThSn = SnTh, then it is easy to
prove that R2

n,h = Hn,2h and Bn,h,3/8 = H2
n,h.
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3. ORDER OF APPROXIMATION BY BLACKMAN- AND ROGOSINSKI-TYPE OPERATORS

In this section we discuss the order of approximation of the Blackman- and Rogosinski-type operators by
the modulus of continuity.

Theorem 1. For every f ∈ X and all a ∈ R for the Blackman-type operators Bn,h,a : X → X we have

∥Bn,h,a f − f∥ ≤

(
∥Bn,h,a∥[X ]+ |a|+ T

2
+

∣∣∣∣12 −a
∣∣∣∣T
)

En( f )+
1
4

ω( f ,h)+
|1−2a|

4
ω( f ,2h), (3.1)

where the constant T > 0 is from Definition 1 (assumption (iii)).

Proof. Let p∗n ∈ Πn be an element of the best approximation of f ∈ X . Then

∥Bn,h,a f − f∥ ≤ ∥Bn,h,a f −Bn,h,a p∗n∥+∥Bn,h,a p∗n − f∥ ≤ ∥Bn,h,a∥[X ]En( f )+∥Bn,h,a p∗n − f∥. (3.2)

Denote
Θh,a f := a f +

1
2

Th f +
1−2a

2
T2h f . (3.3)

Since Sn p∗n = p∗n, Definition 5 implies
Bn,h,a p∗n = Θh,a p∗n.

Therefore,
∥Bn,h,a p∗n − f∥ ≤ ∥Θh,a p∗n −Θh,a f∥+∥Θh,a f − f∥. (3.4)

By definition of Θh,a in (3.3), using the property (iii) of the translation operator in Definition 1, we obtain

∥Θh,a p∗n −Θh,a f∥ ≤
(
|a|+ T

2
+

|1−2a|
2

T
)

En( f ). (3.5)

For the second term in the left-hand side of (3.4) we write

Θh,a f − f =
1
2
(Th − I) f +

1−2a
2

(T2h − I) f .

Thus, by Definition 2 we get

∥Θh,a f − f∥ ≤ 1
2

ω( f ,h)+
1−2a

2
ω( f ,2h).

Substituting all expressions above in (3.2) yields the assertion of the theorem. �
Remark 6. By properties of the modulus of continuity

ω( f ,h)≤ ω( f ,mh)≤ m(1+(m−1)T )ω( f ,h), m ∈ N.

Thus, in Theorem 1 the quantities ω( f ,h) and ω( f ,2h) have the same order, and one may conclude that
the simplest case is when a = 1

2 . This situation will be fixed as follows.

Corollary 1. Let the Hann operator Hn,h : X → X be defined by the equation

Hn,h f :=
1
2
(Sn f +Th(Sn f )).

Then for every f ∈ X the following holds:

∥Hn,h f − f∥ ≤
(

1+T
2

+∥Hn,h∥[X ]

)
En( f )+

1
4

ω( f ,h).
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The importance of the Blackman-type operators consists in the following statement.

Theorem 2. For every f ∈ X it holds that

∥Bn,h,5/8 f − f∥ ≤
(

5
8
(1+T )+∥Bn,h,5/8∥[X ]

)
En( f )+

1
4

ω2( f ,h). (3.6)

Proof. Similarly to the proof of Theorem 1 we proceed

∥Bn,h,5/8 f − f∥ ≤ ∥Bn,h,5/8∥[X ]En( f )+∥Θh p∗n −Θh f∥+∥Θh f − f∥, (3.7)

where

Θh f :=
5
8

f +
1
2

Th f − 1
8

T2h f . (3.8)

Since by Definition 1

(Th − I)2 =
1
2
(T2h −4Th +3I) ,

by (3.8) we have

f −Θh f =
1
4
(Th − I)2 f . (3.9)

Taking a = 5
8 in (3.5), we get

∥Θh p∗n −Θh f∥ ≤ 5
8
(1+T )En( f ),

which together with (3.9) and (3.7) gives the assertion.

Analogous results are valid for the Rogosinski-type operators. �
Theorem 3. For every f ∈ X , a ∈ R for the Rogosinski-type operators Rn,h,a : X → X it holds that

∥Rn,h,a f − f∥ ≤
(
∥Rn,h,a∥[X ]+ |a|T + |1−a|T

)
En( f )+ |a|ω( f ,h)+ |1−a|ω( f ,3h). (3.10)

Again, as by Remark 6 ω( f ,h) and ω( f ,3h) have the same order and g(a) = |a|+ |1−a| (a ∈ R) has
its minimum value on [0,1], we specify

Corollary 2. 1. For 0 ≤ a < 1 the following relation holds:

∥Rn,h,a f − f∥ ≤
(
∥Rn,h,a∥[X ]+T

)
En( f )+ω( f ,3h).

2. Let us denote Rn,h := Rn,h,1. Then it holds that

∥Rn,h f − f∥ ≤
(
∥Rn,h∥[X ]+T

)
En( f )+ω( f ,h).

The specific value a = 9
8 yields a better order of approximation.

Theorem 4. Denote R̃n,h = Rn,h,9/8. Then we have

∥R̃n,h f − f∥ ≤
(
∥R̃n,h∥[X ]+

5
4

T
)

En( f )+
3
2

ω2( f ,h)+
1
2

ω3( f ,h).

Corollary 3. Using the property ωk( f ,δ )≤ (1+T )k−lωl( f ,δ ), k ≥ l of modulus of continuity, we get

∥R̃n,h f − f∥ ≤
(
∥R̃n,h∥[X ]+

5
4

T
)

En( f )+
4+T

2
ω2( f ,h).
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As we may see from Theorems 1–4 and their corollaries, Definitions 3 and 4 deduce approximation
processes when the right-hand sides of the given estimates tend to zero as n → ∞ and h → 0 + . This
statement requires, among others, that the sequences of operator norms ∥Bn,h,a∥[X ], ∥Rn,h,a∥[X ] have to be
uniformly bounded on n and h. From this argumentation it follows that n ∈ N and h ≥ 0 should be related
in some way. We will consider this problem in certain situations like in approximation by trigonometric
polynomials or by the Fourier–Chebyshev series. However, in a general framework we may state as follows.
The families of Blackman- and Rogosinski-type operators possess the representation

Ua = aV +W, V,W ∈ [X ].

Then for every a,a0,a1 ∈ R we get

(a1 −a0)Ua = (a1 −a)Ua0 +(a−a0)Ua1 .

This equality shows that for the boundedness of ∥Ua∥[X ] for arbitrary a ∈ R it is enough to know the
boundedness of ∥Ua0∥[X ] and ∥Ua1∥[X ] for two specific values a0,a1 ∈ R.

4. APPROXIMATION BY TRIGONOMETRIC BLACKMAN- AND ROGOSINSKI-TYPE
OPERATORS

It appears that in classical trigonometric approximation the family of the Blackman-type operators will be
uniformly bounded if h = π

n+1 . By Definition 5, using (1.2), it follows that for Blackman-type operators we
have

Bn,a( f ,x) :=
a0

2
+

n

∑
k=1

φa

(
k

n+1

)
(ak coskx+bk sinkx) , (4.1)

where

φa(t) = a+
1
2

cosπt +
(

1
2
−a
)

cos2πt, t ∈ [0,1], a ∈ R. (4.2)

In space C2π the ordinary translation operator τh( f ,x) = f (x+h), h ∈ R, is well defined, moreover T = 1.
The translation operator τh : C2π → C2π produces the ordinary modulus of continuity given in Remark 2.
Therefore, Theorem 1 yields

Theorem 5. For every f ∈C2π and all a ∈ R for the Blackman-type operators (4.1) it holds that

∥Bn,a f − f∥C2π ≤
(
∥Bn,a∥[C2π ]+ |a|+

∣∣∣∣12 −a
∣∣∣∣+ 1

2

)
En( f )+

1
8

ω̃2

(
f ,

π
n+1

)
+

|1−2a|
8

ω̃2

(
f ,

2π
n+1

)
.

Remark 7. Since |a|+ |1/2−a| ≥ 1/2 with equality for 0 ≤ a ≤ 1/2, it would be interesting to consider
the Blackman operators Bn,a only in the case 0 ≤ a ≤ 1/2 and in the case a = 5/8 due to Theorem 2.

Definition 4 with h = π
2(n+1) , using (1.2), yields the trigonometric Rogosinski-type operators

Rn,a( f ,x) :=
a0

2
+

n

∑
k=1

Ψa

(
k

n+1

)
(ak coskx+bk sinkx) , (4.3)

where
Ψa(t) = acos

πt
2
+(1−a)cos

3πt
2

, t ∈ [0,1], a ∈ R. (4.4)
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Theorem 6. For every f ∈C2π , a ∈ R for the Rogosinski-type operators Rn,a : C2π →C2π it holds that

∥Rn,a f − f∥C2π ≤
(
∥Rn,a∥[C2π ]+ |a|+ |1−a|

)
En( f )+

|a|
2

ω̃2

(
f ,

π
2(n+1)

)
+

|1−a|
2

ω̃2

(
f ,

3π
2(n+1)

)
.

Now we make some preparations for the calculation of the norms ∥Bn,a∥[C2π ]
. It is known [8] that the

trigonometric polynomial operator (or summability operator)

Un( f ,x) =
a0

2
+

n

∑
k=1

φ
(

k
n+1

)
(ak coskx+bk sinkx),

where φ ∈ C[0,1],φ(0) = 1,φ(1) = 0, transforms the space C2π into C2π , and its norm ∥Un∥[C2π ] ≡
∥Un∥C2π→C2π satisfies

sup
n
∥Un∥[C2π ] =

∞∫
−∞

|s(u)|du, (4.5)

where the kernel function s ∈ L1(R) is given by

s(u) =
1∫

0

φ(t)cos(πtu)dt. (4.6)

By (4.5) and (4.2) we find

sup
n
∥Bn,a∥[C2π ] = 2

∞∫
0

|sB,a(u)|du, (4.7)

where by (4.2) and (4.6)

sB,a(t) =
((3−8a)t2 +8a)sinc t

2(1− t2)(4− t2)
(4.8)

with

sinc t :=
sin(πt)

πt
. (4.9)

To calculate the norm in (4.7), we will follow the scheme

∞∫
0

(...) =

ta∫
0

(...)+

m∫
ta

(...)+
∞

∑
k=m

∫ k+1

k
(...).

Let us denote the polynomial in the numerator of (4.8) by

p(t) := (3−8a)t2 +8a. (4.10)

It is clear that the signs of the polynomial p considerably influence the signs of the kernel sB,a. Let us
consider for this polynomial the following possibilities.
1. If 0 ≤ a ≤ 3

8 , then p(t)≥ 0 for all t ∈ R.
2. If a > 3

8 , then the unique positive zero of the polynomial p is ta =
√

8a
8a−3 > 1. Moreover, p(t) ≥ 0, if

0 ≤ t ≤ ta, and p(t)< 0, if t > ta. For the sake of technical simplification let 1
2 ≤ a ≤ 5

8 (due to Theorem 2

and Corollary 1). In this case
√

5
2 ≤ ta ≤ 2.
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In what follows we need some technical results in order to calculate integrals
∫ k+1

k sB,a(t)dt.

Lemma 2. The kernel function (4.8) can be represented by

sB,a(t) = a
(

r
(

t − 1
2

)
+ r
(

t +
1
2

))
+

1−2a
2

(
r
(

t − 3
2

)
+ r
(

t +
3
2

))
, (4.11)

where the original Rogosinski kernel is

sR,1 ≡ r(t) =
1∫

0

cos
πu
2

cos(πtu)du. (4.12)

Proof. Since for all b ∈ R it holds that

r(t −b)+ r(t +b) =
1∫

0

(
cosπ

(
1
2
−b
)

u+ cosπ
(

1
2
+b
)

u
)

cosπtu du, (4.13)

we get

r
(

t − 1
2

)
+ r
(

t +
1
2

)
=

1∫
0

(1+ cosπu)cosπtu du,

r
(

t − 3
2

)
+ r
(

t +
3
2

)
=

1∫
0

(cosπu+ cos2πu)cosπtu du.

Now, by (4.6) and (4.2), it is easy to verify that (4.11) is valid. �
Let us denote the modified integral sine as

Sci(x) :=
x∫

0

sinc(t)dt. (4.14)

Lemma 3. Denote (k ∈ Z)

Sk :=
1
2
(Sci(k+2)−Sci(k)) , (4.15)

then

Ia,k :=
k+1∫
k

sB,a(t)dt = a(Sk−1 +Sk)+

(
1
2
−a
)
(Sk−2 +Sk+1). (4.16)

Proof. By (4.11) we have to calculate

J1,k :=
k+1∫
k

(
r
(

u− 1
2

)
+ r
(

u+
1
2

))
du, (4.17)

J2,k :=
k+1∫
k

(
r
(

u− 3
2

)
+ r
(

u+
3
2

))
du. (4.18)
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Using the definition of the sinc-function and (4.13), we get

r (t −b)+ r (t +b) =
1
2

(
sinc

(
t +b− 1

2

)
+ sinc

(
t −b+

1
2

)
+ sinc

(
t −b− 1

2

)
+ sinc

(
t +b+

1
2

))
.

Now for (4.17) and (4.18) we find

J1,k =

k+1∫
k

(sinc(u)+ sinc(u−1)+ sinc(u+1)+ sinc(u))du,

J2,k =

k+1∫
k

(sinc(u−1)+ sinc(u−2)+ sinc(u+2)+ sinc(u+1))du.

Let us prove that

Sk =
1
2

k+1∫
k

(sinc(v+1)+ sinc(v))dv. (4.19)

Indeed,

k+1∫
k

(sinc(v+1)+ sinc(v))dv =
k+2∫
k

sinc(v)dv =
k+2∫
0

sinc(v)dv−
k∫

0

sinc(v)dv

= Sci(k+2)−Sci(k).

We have now by (4.19)
J1,k = Sk−1 +Sk, J2,k = Sk−2 +Sk+1. (4.20)

Hence, by Lemma 2 we get the assertion. �

5. EXACT VALUES OF NORMS OF TRIGONOMETRIC BLACKMAN- AND ROGOSINSKI-
TYPE OPERATORS

As we saw in Section 4, in the case 0 ≤ a ≤ 3
8 the kernel function sB,a in (4.8) has sign changes only in

integers. This fact allows us to calculate the norms comparatively easily.

Theorem 7. If 0 ≤ a ≤ 3
8 , then

sup
n
∥Bn,a∥[C2π ] = 2a(Sci(2)+Sci(3))+(1−2a)(Sci(1)+Sci(4)). (5.1)

Proof. We have to calculate the signs of sB,a in (4.8). Since p(t)≥ 0, for signs of sB,a we find

sgn(sB,a(u)) =

{
1, 0 ≤ u < 3,
(−1)k, k < u < k+1,k ≥ 3.

Let us denote

I :=
∞∫

0

|sB,a(u)|du. (5.2)
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Decomposing the integral (5.2), and keeping in mind the signs of sB,a and notation in (4.16), we obtain

I =
3∫

0

sB,a(u)du+
∞

∑
k=3

(−1)k
k+1∫
k

sB,a(u)du = Ia,0 + Ia,1 + Ia,2 +
∞

∑
k=3

(−1)kIa,k. (5.3)

We prove that the series

Ma :=
∞

∑
k=3

(−1)kIa,k (5.4)

converges absolutely. Indeed, since by (4.19)

Sk =
1
2

k+1∫
k

sinπvdv
πv(v+1)

, (5.5)

we obtain |Sk| ≤ 1
2π

1
k(k+1) = O

( 1
k2

)
, hence by (4.16) we have |Ia,k| = Oa

( 1
k2

)
, and consequently the series

(5.4) converges absolutely. Thus, we may apply the scheme

∞
∑

k=3
Ak =

∞
∑

k=1
A2k+1 +

∞
∑

k=1
A2k+2

to the series (5.4), which gives

Ma =
∞

∑
k=3

(−1)kIa,k =
∞

∑
k=1

(Ia,2k+2 − Ia,2k+1). (5.6)

Using Lemma 3, we can write

Ia,2k+2 − Ia,2k+1 =

(
2a− 1

2

)
(S2k+2 −S2k)−

(
a− 1

2

)
(S2k+3 −S2k−1). (5.7)

Considering the partial sums of Ma, we write

Ma,N : =
(

2a− 1
2

) N

∑
k=1

(S2k+2 −S2k)−
(

a− 1
2

) N

∑
k=1

(S2k+3 −S2k−1)

=

(
2a− 1

2

)
(−S2 +S2N+2)−

(
a− 1

2

)
(−S1 −S3 +S2N+3 +S2N+1).

Further, since by (5.5) SN = O(N−2), we get

Ma =

(
1
2
−2a

)
S2 +

(
a− 1

2

)
(S1 +S3) =−aS2 +

(
1
2
−a
)
(S2 −S1 −S3).

Now by Lemma 3 and (5.4) for (5.3) we obtain

I = a(S−1 +2S0 +2S1)+

(
1
2
−a
)
(S−2 +S−1 +S0 +2S2). (5.8)

By (4.15) we deduce (Sci is the odd function)

S−k = Sk−2, (5.9)
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which for (5.8) yields

I =
(

S−1

2
+S0 +S2

)
+2a(S1 −S2). (5.10)

Finally, using (4.15), we find

I =
1
2
(Sci(1)+Sci(4))+a(Sci(3)−Sci(1)−Sci(4)+Sci(2)). (5.11)

Thus, by (4.7) and (5.2), the Blackman operator norm has the value

sup
n
∥Bn,a∥[C2π ] = 2a(Sci(2)+Sci(3))+(1−2a)(Sci(1)+Sci(4)).

�

Remark 8. If 0 ≤ a ≤ 3/8, then by calculating the modified integral sine using Mathematica, we find

supn∥Bn,a∥[C2π ] = 1.06446...−a(0.15991...).

In the particular case a = 3
8 , we get

sup
n
∥Bn,3/8∥[C2π ] =

3
4
(

Sci(2)+Sci(3)
)
+

1
4
(

Sci(1)+Sci(2)
)
= 1.00449...

That value is very close to the norms of positive operators which are equal to one. In a quite similar way
we are able to calculate norms with some other values of parameter a ∈ R. The results are summarized as
follows.

Theorem 8. The Blackman-type operators Bn,a ∈ [C2π ] have the following operator norms:
1. If a = 1/2 (Hann operator, see Remark 5), then

sup
n
∥Bn,1/2∥[C2π ] = Sci(2)+Sci(1) = 1.0409...

2. If a = 27/64 (then the polynomial (4.10) has an integer zero at t = 3), then

sup
n
∥Bn,27/64∥[C2π ] =

1
32

(5Sci(2)+27Sci(3)+27Sci(4)+5Sci(5)) = 1.00235...

3. If a = 5/8 (Bn,5/8 has the highest order of approximation, see Theorem 2), then

sup
n
∥Bn,5/8∥[C2π ] = 4

√
5/2∫

1

sB,5/8(t)dt +
1
4
(12Sci(1)−Sci(2)−6Sci(3)+Sci(4)) = 1.23423...

Analogously, we can calculate some exact operator norms of the Rogosinski-type operators. A selection
of results follows.

Theorem 9. The Rogosinski-type operators Rn,a ∈ [C2π ], defined by the kernel function

sψ
a (t) =

2cos(πt)[12a−3+(12−16a)t2]

π(1−4t2)(9−4t2)
,
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have the following operator norms:

1. If 0 ≤ a ≤ 1
4 , then (ta is the positive zero of the polynomial p(t) = 12a−3+(12−16a)t2)

sup
n
∥Rn,a∥=−2

ta∫
0

sψ
a (t)dt +2

1/2∫
ta

sψ
a (t)dt +(3−2a)Sci(1)+(5a−3)Sci(2)+(a−1)(Sci(4)−3Sci(3)).

2. If 1
4 ≤ a ≤ 3

4 , then (p(t)≥ 0)

sup
n
∥Rn,a∥= 2

1/2∫
0

sψ
a (t)dt +(1−2a)Sci(1)+(5a−3)Sci(2)+(2a−2)Sci(3).

Corollary 4. The operator norms of the Rogosinski-type operators have the following numerical values:

1. If a = 3
4 , then sup

n
∥Rn, 3

4
∥= 1.88903...

2. If a = 1
2 , then sup

n
∥Rn, 1

2
∥= 1.39741...

6. APPROXIMATION BY ROGOSINSKI OPERATORS OF THE FOURIER–CHEBYSHEV
SERIES

Our next application of the general framework in Sections 1–3 leads to the Fourier–Chebyshev
approximation, introduced and elaborated in paper [3] by P. L. Butzer and R. Stens. Now the Chebyshev
cosine operator function (1.4) will be used in Definition 4. Similarly to the trigonometric case, the
Rogosinski-type operators have the form

RC
n,a( f ,x) := f̂C(0)+2

n

∑
k=1

Ψa

(
k

n+1

)
f̂C(k) Tk(x), (6.1)

where Ψa is defined by (4.4). General Theorem 3 yields

Theorem 10. For every f ∈C[−1,1] and all a ∈R for the Rogosinski-type operators RC
n,a : C[−1,1] →C[−1,1] it

holds that ∥∥RC
n,a f − f

∥∥
C[−1,1]

≤
(∥∥RC

n,a

∥∥
[C[−1,1]]

+ |a|+ |1−a|
)

En( f )

+ |a|ωC
(

f ,
π

2(n+1)

)
+ |1−a|ωC

(
f ,

3π
2(n+1)

)
.

We have to notice here that the modulus of continuity

ωC( f ,δ ) := sup
0≤h≤δ≤π

∥∥TC
h f − f

∥∥
C[−1,1]

is well defined for every f ∈ C[−1,1] and ωC( f ,δ ) is a monotone decreasing function of δ ∈ [0,π] with
limδ→0+ ωC( f ,δ ) = 0 (see [3]). The quantity En( f ) is the best algebraic approximation of f ∈ C[−1,1] by
polynomials of degree not exceeding n ∈N. About operator norms

∥∥RC
n,a

∥∥
[C[−1,1]]

, using a basic reference [3],
we may explain the following. The operator (6.1) can be rewritten in integral form as ([3], Section 5)

RC
n,a( f ,x) =

1
π

1∫
−1

TC
arccosu( f ,x) rC

n,a(u)
du√

1−u2
, (6.2)
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where the kernel function is given by

rC
n,a(u) := 1+2

n

∑
k=1

ψa

(
k

n+1

)
Tk(u). (6.3)

It is known ([3], Lemma 1) that
∥∥TC

h f
∥∥

C[−1,1]
≤ ∥ f∥C[−1,1]

, i.e. T = 1 in Definition 1. Thus, by (6.2) we obtain

∥∥RC
n,a

∥∥
[C[−1,1]]

≤ 1
π

1∫
−1

∣∣rC
n,a(u)

∣∣ du√
1−u2

.

By the substitution u = cos t here the right-hand side becomes

1
π

π∫
0

∣∣∣∣∣1+2
n

∑
k=1

ψa

(
k

n+1

)
coskt

∣∣∣∣∣dt,

which appears to be ([2], Section 1.2.4) the operator norm ∥Rn,a∥[C2π ]
of (4.3). Therefore,∥∥RC

n,a

∥∥
[C[−1,1]]

≤ ∥Rn,a∥[C2π ]
. (6.4)

In fact, inequality (6.4) is true for all Θ-means of the Fourier–Chebyshev series with the kernel function

cn(u) := 1+2
∞

∑
k=1

Θk(n)cosku,

provided cn ∈ L1
2π , n ∈ N ([2], Section 1.2.4).

In the particular case a = 1 the kernel function (6.3) can be written explicitly as

rC
n (u) = sin

π
2(n+1)

× Tn+1(u)
u− cos π

2(n+1)
, u ̸= cos

π
2(n+1)

,

and rC
n
(
cos π

2n+2

)
= n+ 1. The three first kernel functions are rC

0 (u) = 1, rC
1 (u) =

√
2u+ 1, and rC

2 (u) =
u(2u+

√
3). The kernel function rC

n is not positive, but it is technically simpler than that introduced in [3].

7. CONCLUSION

We introduced the Blackman- and Rogosinski-type approximation operators using the cosine operator
function. This abstract setting is useful, because now we are able to consider different approximation
problems from the unique point of view. Another feature of this paper is that in the trigonometric case we
computed exact values of some operator norms of defined Blackman- and Rogosinski-type approximation
operators.
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Blackmani ja Rogosinski tüüpi operaatoritega lähendamisest
Andi Kivinukk ja Anna Saksa

On defineeritud abstraktses Banachi ruumis Blackmani ja Rogosinski tüüpi operaatorid, kasutades koosinus-
operaatori mõistet. Uus lähenemisviis võimaldab ühtsest seisukohast tõestada lähenduskiiruste hinnanguid
ja rakendada saadud tulemusi trigonomeetrilistele Fourier’ ridadele või ka Fourier’-Tšebõšovi ridadele.


