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Abstract. Non-equilibrium thermodynamics with internal variables introduces a natural hierarchical arrangement of evolution 
equations. Three examples are shown: a hierarchy of linear constitutive equations in thermodynamic rheology with a single 
internal variable, a hierarchy of wave equations in the theory of generalized continua with dual internal variables, and a 
hierarchical arrangement of the Fourier equation in the theory of heat conduction with current multipliers.
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1. INTRODUCTION

Theories and material models of multiscale phenomena in space and time treat the scale changes either
as a step from a micro- or mesoscopic statistical level to the phenomenological one or as a reduction
of the degrees of freedom by averaging over a field variable or spatial dimension. The characteristic
methodology is similar to the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy of the kinetic
theory [1,2]. In these approaches, the modelling of transitional effects requires detailed knowledge or drastic
simplification of the material structure.

In this work, we show that a hierarchical arrangement of evolution equations is apparent in thermo-
dynamics with internal variables where the different levels of the hierarchy are regulated by material para-
meters. The scale transitions are natural and dynamical.

We show three examples. First, a hierarchy of ordinary differential equations is presented in the thermo-
dynamic rheology of solids with a single internal variable. The building block of the hierarchy is the basic
constitutive equation of elasticity. This is a hierarchy between the different time scales of the evolution, a
time hierarchy.

Then a hierarchy of hyperbolic partial differential equations is shown in the thermodynamic theory
of generalized continua with dual internal variables. The building block of the hierarchy is the wave
equation. This is a dynamic hierarchy between different time and length scales of the evolution, a space–time
hierarchy.

Finally, a hierarchy of parabolic partial differential equations is shown in the thermodynamic theory of
heat conduction with current multipliers. The building block of the hierarchy is the Fourier equation. Like
the previous example, it is a dynamic hierarchy between different time and length scales of the evolution, a
space–time hierarchy.
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2. THE HIERARCHY OF RHEOLOGICAL BODIES AND THE KLUITENBERG–VERHÁS
MODEL

In the thermodynamic approach to rheology, an extended state space is chosen, which is spanned by the
following variables: specific internal energy e, strain ε , and an internal variable ξ . This modelling approach
is well known for fluids [3–7] and was introduced recently for solids [8]. The internal variable is a second
order symmetric tensor, based on our purpose to gain an extension of the mechanical aspects (the ‘material
law’) of the initial system and to obtain corrections to the relation between stress and strain, which are both
symmetric tensors.

We shift entropy by a concave non-equilibrium term depending – quadratically – on ξ only. According
to the Morse lemma, this new entropy term can be chosen as a pure square term; hence, the extended specific
entropy function s̃ is

s̃(e,ε ,ξ ) = s(e,ε)− 1
2

tr
(

ξ 2
)
, (1)

where tr denotes the trace of a second order tensor and we have denoted the classical specific entropy without
tilde. The Gibbs relation for the extended entropy is a convenient particular thermodynamic notation for the
partial derivatives, the intensive quantities:

ρds̃ =
ρ
T

de− 1
T

tr(σdε)−ρ tr(ξ dξ ). (2)

Here ρ is density, T is temperature, and σ is thermostatic stress. We assume that the thermostatic stress is
different from the stress σ̃ in the balance of momentum and internal energy. The difference is characterized
introducing a rheological (non-equilibrium) term:

σ̃ = σ + σ̂ . (3)

Consequently, the mechanical power, and correspondingly the energy balance, gets shifted as

ρ ė+∇ · je = tr(σ̃ ε̇) = tr(σε̇)+ tr(σ̂ ε̇). (4)

Here je is the conductive current density of the internal energy, the heat flux. With the choice js̃ = je/T, and
using (2) and (4), the entropy production is found to be

Σ = ρ ˙̃s+∇ · js̃ =
ρ
T

ė− 1
T

tr(σε̇)−ρ tr
(
ξ ξ̇
)
+∇ ·

(
je

T

)
=− 1

T
∇ · je +

1
T

tr(σ̂ ε̇)−ρ tr
(
ξ ξ̇
)
+∇ ·

(
je

T

)
= je ·∇

(
1
T

)
+

1
T

tr
(
σ̂ dε̇d)+ 1

T
tr
(
σ̂ sε̇s)−ρ tr

(
ξ dξ̇ d)−ρ tr

(
ξ sξ̇ s)≥ 0. (5)

Here the symmetric stress, strain, and internal variable ξ tensors are divided into spherical and deviatoric
parts: σ = σd +σ s, ε = εd +εs, and ξ = ξ d +ξ s. Here As = (trA)I/3 is the spherical part of the symmetric
tensor A, I denotes the unity tensor, and the deviatoric part is defined as Ad = A− As. In the last row
of (5), vectors are present in the first term, scalars in the third and fifth terms, and symmetric traceless
tensors in the second and fourth terms. In an isotropic material, these three types of quantities cannot couple
to one another. Therefore, concerning the term containing vectors, we consider Fourier heat conduction,
je = λ∇

( 1
T

)
. For the remaining two pairs of terms, the most general Onsagerian solution is

σ̂d = ld
11ε̇d + ld

12
(
−ρT ξ d), σ̂ s = ls

11ε̇s + ls
12
(
−ρT ξ s),

ξ̇ d = ld
21ε̇d + ld

22
(
−ρT ξ d), ξ̇ s = ls

21ε̇s + ls
22
(
−ρT ξ s), (6)
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where the ld
11, l

d
12, l

d
21, l

d
22, and ls

11, l
s
12, l

s
21, l

s
22 material parameters are subjects of thermodynamic restrictions,

due to the entropy inequality (5).
Eliminating the internal variable in the constant temperature case also leads to two independent models,

σ d + τdσ̇d = Ed
0 εd +Ed

1 ε̇d +Ed
2 ε̈d, σ s + τsσ̇ s = Es

0εs +Es
1ε̇s +Es

2ε̈s, (7)

with thermodynamics-originated inequalities for the altogether eight coefficients. The complete model is
a deviatoric and a spherical Kluitenberg–Verhás body. When Ed

2 = 0, the deviatoric part reduces to the
standard or Poynting–Thomson body of solid rheology. Several simpler rheological bodies may be obtained
by a particular choice of the parameters.

A suitable rearrangement reveals the hierarchical structure of the equations:

(σ d −Ed
0 εd)+ τd d

dt

(
σd −

Ed
1

τd εd
)
+Ed

2
d2

dt2 εd = 0,

(σ s −Es
0εs)+ τs d

dt

(
σ s −

Es
1

τs εs
)
+Es

2
d2

dt2 εs = 0.
(8)

In both the deviatoric and the spherical case, the first term is a pure elastic stress–strain relation, the second
is the time derivative of a similar relation with different coefficients, and the third one with the highest
derivative is an incomplete block, closing the two terms’ hierarchy.

If the coefficients in the consecutive blocks are the same, we may speak about hierarchical resonance.
If the closure term is zero, a hierarchical resonance need not be dissipative.

In case of specific loading conditions, the deviatoric and spherical parts are coupled but the hierarchical
structure may be conserved. It is straightforward to calculate the effective rheological equation in case of
uniaxial loading conditions. Denoting the uniaxial stress by σ , one obtains:

σ −E 0ε + τ 1
d
dt

(
σ − E 1

τ 1
ε
)
+ τ 2

d2

dt2

(
σ − E 2

τ 2
ε
)
+ τ 3

d3

dt3

(
σ −

E 3
τ 3

ε
)
+E 4

d4

dt4 ε = 0, (9)

where τ 1,τ 2,τ 2 and E 0,E 1,E 2,E 3,E 4 coefficients are calculated from the spherical and deviatoric
coefficients of (7) [8].

In typical experimental situations, the time scales of the different blocks are clearly separated.

3. HIERARCHY OF WAVE EQUATIONS IN THE THEORY OF DUAL INTERNAL
VARIABLES

Dual internal variables extend the modelling capability of non-equilibrium thermodynamics by connecting
inertial phenomena with dissipation [9]. Dual internal variables coupled to continuum mechanics lead to
generalized continua [10,11]. In this case, the elimination of the internal variables results in a hierarchical
structure of wave equations [10,12,13].

In what follows, we introduce in brief a one-dimensional version of the theory of weakly nonlocal dual
internal variables coupled to small-strain elasticity. Therefore, the state space is given by the strain, ε , and
the internal variables are denoted by ϕ and ξ . In this illustrative example, specific entropy is a quadratic
function of the internal variables and their gradients:

s̃(e,ε ,ξ ,ϕ ,∂xξ ,∂xϕ) = s(e,ε)− a1

2
ξ 2 − b1

2
(∂xξ )2 − a2

2
ϕ 2 − b2

2
(∂xϕ)2. (10)

The Gibbs relation of the weakly nonlocal theory fixes the partial derivatives of the entropy function as

ρds̃ =
ρ
T

de− σ
T

dε −ρa1ξ dξ −ρa2ϕdϕ −ρb1∂xξ d(∂xξ )−ρb2∂xϕd(∂xϕ). (11)
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Assuming the following form of the entropy current density:

js̃ =
q
T
−ρ

∂ s
∂ (∂xξ )

ξ̇ −ρ
∂ s

∂ (∂xϕ)
ϕ̇ , (12)

one obtains the entropy production similarly to the previous section:

T Σ = T q∂x
1
T
+(σ −T ρ∂εs) ε̇ +

(
∂ξ s−∂x(∂∂xξ s)

)︸ ︷︷ ︸
Âξ

ξ̇ +
(
∂ϕ s−∂x(∂∂xϕ s)

)︸ ︷︷ ︸
B̂ϕ

ϕ̇ ≥ 0. (13)

Here, we have introduced a shorthand notation for the internal variable related weakly to nonlocal thermo-
dynamic forces. The above form of the entropy current density and entropy production (dissipation
inequality) can be also derived with the help of a more detailed thermodynamic analysis, as it is shown
in [11]. Then a linear solution of the above inequality is

σ −Eε = l11ε̇ + l12Âξ + l13B̂ϕ ,

ξ̇ = l21ε̇ + l22Âξ + l23B̂ϕ , (14)

ϕ̇ = l31ε̇ + l32Âξ + l33B̂ϕ .

In our simple case

Â =−a1 +b1∂xx, B̂ =−a2 +b2∂xx. (15)

The elimination of the internal variables leads to the following constitutive relation of stress and strain:

σ̈ +(α1 +α2∂x)σ̇ +(β1 +β2∂x +β3∂xx)σ

=
...
ε +(α̂1 + α̂2∂x)ε̈ +(β̂1 + β̂2∂x + β̂3∂xx)ε̇ +(γ̂1 + γ̂2∂x + γ̂3∂xx)ε, (16)

where the coefficients α1,α2,β1,β2,β3 and α̂1, α̂2, β̂1, β̂2, β̂3, γ̂1, γ̂2, γ̂3 are simple polynomials of the
thermodynamic material parameters. The consequence of the momentum balance and the compatibility
condition is the well-known relation of stress and strain

ρ v̇−∂xσ = 0, ∂xv = ε̇ ⇒ ρε̈ = ∂xxσ . (17)

Eliminating stress from (16), one obtains the following partial differential equation:

(ρε̈ − α̂1∂xxε )̈+ (α1ρε̈ − β̂1∂xxε )̇+ (β1ρε̈ − γ̂1∂xxε)+∂x(α2ρε̈ − β̂2∂xxε )̇

+∂x(β2ρε̈ − γ̂2∂xxε)+∂xx(β3ρε̈ − γ̂3∂xxε)−∂xx(ε̈ + β̂3∂xxε + α̂2∂xε̇ )̇ = 0. (18)

Mixed space and time derivatives of coupled wave equations are analysed in detail and are compared to
various wave propagation models in [13].

4. HIERARCHY OF FOURIER EQUATIONS AND GENERALIZED HEAT CONDUCTION
WITH CURRENT MULTIPLIERS

Non-equilibrium thermodynamics with current multipliers introduces a unified constitutive theory of heat
conduction where several generalizations of Fourier equation may be obtained as special cases [14]. More-
over, it is shown that the structure is compatible with the moment series expansion of kinetic theory, at least
up to the third moment [15]. In this framework, the basic state space is extended by the heat flux q and also
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by a second order tensorial internal variable Q. We assume the usual quadratic form of the entropy function
at the extended part of the state space,

s̃(e,q,Q) = s(e)− m1

2
q2 − m2

2
Q2. (19)

Then a generalized entropy current is introduced in the following form:

jq = b ·q+B : Q. (20)

Here, the current multipliers b and B are second and third order tensors, respectively. This form of the
generalized entropy current was introduced by Nyı́ri [16]. The multipliers b and B are to be determined as
constitutive functions with the help of the entropy inequality. A short calculation results in

Σ =

(
b− 1

T
I
)

: ∇q− (∇b−m1q̇) ·q−
(
∇ ·B−m2Q̇

)
: Q+B· : ∇Q ≥ 0. (21)

Here the number of the central dots denotes one, two, and three contractions of the first, second, and third
order tensors, respectively. The first and the third terms are products of second order tensors, the second
term is vectorial, and the last term is a product of third order tensors. Therefore, for isotropic materials, cross
effects may appear only between the first and the third terms. Hence, in a one dimensional simplification,
linear relations between the thermodynamic fluxes and forces are as follows:

m1q̇−∂xb =−l1q, (22)

m2Q̇−∂xB =−k1Q+ k12∂xq, (23)

b− 1
T

=−k21Q+ k2∂xq, (24)

B = n3∂xQ, (25)

where ∂x denotes the one dimensional spatial derivative and the material coefficients m1,m2, l1, k1,k2,
k12,k21,n3 are subjects to thermodynamical constraints. It is straightforward to eliminate the current
multipliers and the tensorial internal variable Q. Then one obtains the following equation:

m1m2q̈+(m2l1 +m1k1)q̇− (m2k2 +m1n3)∂xxq̇+ k1l1q− (k1k2 − k12k21 + l1n3)∂xxq+ k2n3∂xxxxq

− k1∂x

(
1
T

)
−m2∂x

( 1
T

)̇
+n3∂xxx

(
1
T

)
= 0. (26)

In our case, the balance of internal energy (4) is

ρcṪ +∂xq = 0, (27)

where ρ is the density and c is the specific heat. The combination of (26) and (27) may be written in the
following form:

(
(m2l1 +m1k1)Ṫ +

m2

ρc
∂xx

(
1
T

))̇
+ k1

(
l1Ṫ +

1
ρc

∂xx

(
1
T

))
−∂xx

(
(k1k2 − k12k21 + l1n3)Ṫ − n3

ρc
∂xx

(
1
T

))
+
(
m2m1Ṫ − (m1n3 +m2k2)∂xxT

)̈
+ k2n3∂xxxxṪ = 0. (28)

We can observe various time and space derivatives of the Fourier equation in different forms, plus the
last term with the highest derivatives. The arrangement is space–time hierarchical, like in the previous
section.
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4.1. Hierarchical resonance: the example of the Guyer–Krumhansl equation

The hierarchical rearrangement of an evolution equation may help in recognizing solution patterns. In this
subsection, we give a simple example with the help of the Guyer–Krumhansl equation.

The Guyer–Krumhansl equation is obtained when n3 = m2 = k12 = 0 in

τq∂t

(
∂tT − a

τq
∂xxT

)
+∂tT −λ∂xx

(
1
T

)
= 0. (29)

Here, τq = m1/l1, λ = 1/(ρcl1) and a = k2/l1, and these coefficients are considered constant. This is a
two-level hierarchical arrangement. If τq = 0, then the first term is zero, and the hierarchy is reduced to a
single Fourier equation. If a = τqλ , then there appears the same Fourier equation in both terms. This is the
case of hierarchical resonance, and the solutions of the coupled set of equations may be identical to those
of the single Fourier equation [15].

The resonance may help to classify the solutions. Let us introduce adiabatic boundary at the end of a
rod and heat pulse boundary conditions at the front side in the following form:

q0(t) = q(x = 0, t) =

{
qmax

(
1− cos

(
2π · t

tp

))
if 0 < t ≤ tp,

0 if t > tp.

Here tp is the duration of the pulse and qmax is the maximum of the heat flux at the boundary. Initially, the
temperature is uniform and there is no heat flux q(t = 0,x) = 0, T (t = 0,x) = T0. Then the solutions show
characteristic differences depending on whether the parameters are above or below the resonance value. This
is represented in Fig. 1, where temperature and time are the following dimensionless quantities: t̂ = λ t

ρcL2

and T̂ = T−T0
Tend−T0

. Here L is the length of the rod and Tend is the asymptotic value of the temperature after the
equilibration.
• If a = τqλ , then we obtain the solution of the Fourier equation. This is the solid line in Fig. 1.
• If a < τqλ , then we obtain solutions where temperature starts to increase later than in the Fourier solution.

For short rods, the heat pulse is observable. The solution is zero at the beginning and a visible heat pulse
appears similarly to the solutions of the Maxwell–Cattaneo–Vernotte equation. This is the dashed line in
Fig. 1.

• If a > τqλ , then temperature starts to increase earlier than for the Fourier solution. The remnants of the
heat pulse are not observable, and sometimes there is a change in the steepness of the solution, a kink.
The solution is more damped than the Fourier one. This is the dashed-dotted line in Fig. 1.

Fig. 1. Characteristic solutions of of the Guyer–Krumhansl equation in case of heat pulse experiments.
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5. SUMMARY

Eliminating internal variables in non-equilibrium thermodynamics results in a hierarchical structure of the
evolution equation. The buiding block of the hierarchy is the evolution equation of the original theory, which
was supplemented by the internal variable.

The solution of the original equation may appear at different particular values of the parameters. If this
happens with more than one nonzero element of the hierarchy, we can call it hierarchical resonance.
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Evolutsioonivõrrandite termodünaamilised hierarhiad

Peter Ván, Robert Kovács ja Tamás Fülöp

Kui mittetasakaalulises termodünaamikas rakendatakse füüsikaliste protsesside kirjeldamiseks sisemuutu-
jate teooriat, siis on tavaliselt tulemuseks hierarhilised evolutsioonivõrrandid. Artiklis on toodud kolm
vastavat näidet. Esiteks, ühte sisemuutujat sisaldav lineaarsete olekuvõrrandite hierarhia termodünaamilises
reoloogias. Teiseks, duaalseid sisemuutujaid sisaldav lainevõrrandite hierarhia pideva keskkonna üldistatud
teoorias. Kolmandaks, hierarhiline Fourier’ võrrand soojusjuhtivuse üldistatud teoorias, kus entroopiavoo
kirjeldamisel on lisaks termodünaamilistele sisemuutujatele sisse toodud ka nn vookordajad. Matemaa-
tiliselt kujutavad viimased endast kolmandat järku tensoreid.


