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Transverse instability of nonlinear longitudinal waves in hexagonal lattices
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Abstract. Various continuum limits of the original discrete hexagonal lattice model are used to obtain transverse weakly nonlinear
equations for longitudinal waves. It is shown, that the long wavelength continuum limit gives rise to the Kadomtsev–Petviashvili
equation, while another continuum limit results in obtaining two-dimensional generalization of the nonlinear Schrödinger equation.
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1. INTRODUCTION

Nonlinear waves in crystals are studied using both discrete and continuum modelling [1–3]. However, while
in the linear case both discrete and continuum equations may be analysed analytically, only a few discrete
nonlinear equations are solved. Therefore, an approach, based on the continuum limit of the original discrete
model, seems to be preferable. An important problem on this way is obtaining a correct continuum limit [3].

Recently, a two-dimensional (2D) weakly nonlinear hexagonal lattice model has been studied [4].
However, only plane longitudinal waves were considered. Nevertheless, it was found that dispersion relation
for the discrete equations of the plane waves contains additional extrema in comparison with that of the 1D
lattice model. It results in obtaining not only one- and two-field but also four-field continuum limits, which
are valid for different intervals of the wavelengths. As a result, various nonlinear governing equations are
obtained for all three cases, that possess nonlinear localized wave solutions or solitary wave solutions.

In this paper, the attention is paid to the modelling of a weak transverse instability of longitudinal
plane waves in a hexagonal lattice. The linearized discrete equations are used to define a small parameter,
responsible for the weak transverse effect while dispersion relation has the same form as for the plane
waves. Only two of the three continuum limits are analysed. It results in the development of various
nonlinear continuum models using different procedures of continualization. In particular, it allows us to
find out how famous Kadomtsev–Petviashvili equation and 2D generalization of the nonlinear Schrödinger
equation appear for the continuum description of nonlinear waves in the hexagonal lattice.

∗ Corresponding author, alexey.porubov@gmail.com



350 Proceedings of the Estonian Academy of Sciences, 2015, 64, 3S, 349–355

2. STATEMENT OF THE PROBLEM

The hexagonal model considered represents a discrete structure, consisting of particles with equal masses
M. Each particle is assumed to interact with six neighbouring particles, placed at equal distances l. The
interaction forces are modelled by springs with linear rigidity, C, and nonlinear rigidity, Q (may be of either
sign),
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The expressions for elongations and the sketch of the structure are not presented here due to the lack
of space. They may be found in [4]. The two-dimensional nonlinear discrete equations are obtained for
horizontal (xm,n) and vertical (ym,n) displacements of a particle with numbers m, n, where m counts in
horizontal direction. Using conventional expression for the kinetic energy, the Lagrangian is composed, and
the Hamilton–Ostrogradsky variational principle is applied, resulting in

M(xm,n)tt +
1
4

C ((xm,n − xm−1,n−1)+(xm,n − xm−1,n+1)+(xm,n − xm+1,n−1)

+ (xm,n − xm+1,n+1)−4(xm−2,n + xm+2,n −2xm,n))

+

√
3

4
C ((ym,n − ym−1,n−1)+(ym,n − ym+1,n+1)+(ym−1,n+1 − ym,n)+(ym+1,n−1 − ym,n))

+
1
8

Q
(
(xm,n − xm−1,n−1)

2 +(xm,n − xm−1,n+1)
2 − (xm,n − xm+1,n−1)

2

− (xm,n − xm+1,n+1)
2 +8

[
(xm,n − xm−2,n)

2 − (xm,n − xm+2,n)
2])

+

√
3

4
Q((xm,n − xm−1,n−1)(ym,n − ym−1,n−1)− (xm,n − xm−1,n+1)(ym,n − ym−1,n+1)

+ (xm,n − xm+1,n−1)(ym,n − ym+1,n−1)− (xm,n − xm+1,n+1)(ym,n − ym+1,n+1))

+
3
8

Q((ym,n − ym−1,n−1)
2 +(ym,n − ym−1,n+1)

2 − (ym,n − ym+1,n−1)
2 − (ym,n − ym+1,n+1)

2) = 0, (1)

M(ym,n)tt +

√
3

4
C((xm,n − xm−1,n−1)+(xm,n − xm+1,n+1)+(xm−1,n+1 − xm,n)+(xm+1,n−1 − xm,n)

+
√

3[(ym,n − ym−1,n−1)+(ym,n − ym−1,n+1)+(ym,n − ym+1,n−1)+(ym,n − ym+1,n+1)])

+
1
8

Q(
√

3
[
(xm,n − xm−1,n−1)

2 − (xm,n − xm−1,n+1)
2 +(xm,n − xm+1,n−1)

2 − (xm,n − xm+1,n+1)
2]

+ 6[(xm,n − xm−1,n−1)(ym,n − ym−1,n−1)+(xm,n − xm−1,n+1)(ym,n − ym−1,n+1)

− (xm,n − xm+1,n−1)(ym,n − ym+1,n−1)− (xm,n − xm+1,n+1)(ym,n − ym+1,n+1) ]

+3
√

3[(ym,n − ym−1,n−1)
2 − (ym,n − ym−1,n+1)

2 +(ym,n − ym+1,n−1)
2 − (ym,n − ym+1,n+1)

2]) = 0. (2)

Only longitudinal plane waves, xm, propagation along the x axis were considered in [4]. For this purpose, it
was assumed that ym,n = 0 and no variations with respect to n happen in Eqs (1) and (2). Now the attention
is paid to the influence of transverse variations. For this purpose, first, the linearized equations are studied.
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3. LINEAR ANALYSIS

The linearized governing equations for Q = 0 are
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The dispersion relation is obtained after presenting the solutions in the form

xm,n = Aexp(ı(kxlxm+ kylyn−ω t)), ym,n = Bexp(ı(kxlxm+ kylyn−ω t)), (5)

where lx = l/2, ly =
√

3 l/2. Let us consider only the case of weak transverse variations along the vertical
axis y, kyly = ε k̄yly. Then one obtains coskyly ≈ 1, sinkyly ≈ ε k̄yly. The substitution of Eq. (5) into Eqs (3)
and (4) results in
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Equalization of orders in Eq. (7) implies an assumption B = εB̄ that corresponds to a weak shear wave.
Then Eq. (6) gives rise to the asymptotic expression of the dispersion relation
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while Eq. (7) results in the relationship between A and B. The leading order part of the dispersion
relation corresponds to the case of plane waves that was studied in detail in [4]. Three possibilities for
continualization have been found there, here the two of them will be considered, namely, the solution at
small wave numbers, kxlx << 1, that corresponds to the area near the origin at the dispersion curve, and the
solution in the vicinity of kxlx = π that corresponds to the minimum of the dispersion curve [4]. In the last
case, one can write kxlx = π + k1lx and consider small values of k1lx.

4. FIRST CONTINUUM LIMIT

An analysis of the linearized discrete equations allows us to obtain continuum equations for longitudinal
waves propagating along horizontal x direction and weakly perturbed in vertical y direction. For this purpose,
the continuum displacements of the central particle, xm,n, ym,n, are u(x,Y, t), ε v(x,Y, t) respectively where
Y = εy, ε << 1 is a small parameter. Then the Taylor series for neighbouring particles may be written as
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The additional scaling is needed to characterize orders of nonlinear and higher-order derivative linear
terms (dispersion) besides weak transverse variations (diffraction). Let us introduce T ∗ as a scale for time,
L as a scale for x and A as a scale for the displacements u and v. Note that the dimension of Q differs from
that of C, then one assumes that Q = Q̄/l. One assumes that T ∗ = L/c where c is the velocity of linear
longitudinal waves, c =

√
9C l2/(8M). Equal orders of nonlinear and dispersion terms require A = δ 2,

l/L = δ , where δ is a small parameter. One assumes also that δ ∼ ε to get equal contribution of nonlinear,
dispersive and diffraction terms that correspond to the most interesting case.

Substituting the Taylor series into the discrete governing equations (1) and (2) and omitting bars in
notations for nondimensional variables for simplicity, one obtains
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Equations (9) and (10) may be uncoupled when a solution is considered that depends on the phase
variable ξ = x− t, vertical coordinate Y and slow time τ = ε2t, u = u(ξ ,Y,τ), v = v(ξ ,Y,τ). Then Eq. (10)
is resolved for vξ ,

vξ = uY ,

while Eq. (9) becomes the well-known Kadomtsev–Petviashvili equation for the longitudinal strain w = uξ ,(
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The signs at the coefficients of the equation correspond to the case of transverse stability of the plane
waves [5]. Two-dimensional localized structures are accounted for the exact two-soliton solution [5].
Detailed analysis of this solution may be found in [6,7]. Also numerical simulations of initially non-
interacting plane waves reveals abnormal increase in the amplitude in the area of the waves interaction [7,8].

5. SECOND CONTINUUM LIMIT

One cannot apply the same continualization procedure for small k1lx [3,4]. One has to introduce before the
displacements of even and odd particles, p1m,n, and p2m,n for the horizontal displacement, xm,n, and q1m,n,
and q2m,n for the vertical displacement, ym,n. Since displacements of even and odd lie each at its smooth
curve (see [4]), now the procedure of continualization from the previous section may be applied to them
separately. It results in obtaining four continuum equations for the continuum displacements u1(x,Y, t),
εv1(x,Y, t) chosen for the even central particle p1m,n, q1m,n, and for the functions u2(x,Y, t), εv2(x,Y, t),
describing continuum displacements of the odd particle, p2m,n, q2m,n.

Displacements of even and odd masses cannot be recognized in the continuum description. Therefore
new variable are more reasonable for the continuum description,

U1 =
u1 +u2

2
, U2 =

u1 −u2

2
, V1 =

v1 + v2

2
, V2 =

v1 − v2

2
.

New variables U1, V1 account for conventional macro-displacements, while the variables U2, V2 describe
the influence of the internal structure. The governing equations in new variables are written omitting
negligibly small terms (that will be seen from the forthcoming solution),
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Let us assume that
U2 = εU21 + ε2U22 + ε3U23 + . . . (16)

Substituting the series into Eq. (14) and equating to zero terms at each order of ε , one obtains that equation
at the leading order ε is
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The solution of Eq. (17) is

U21 = B(X ,T,τ)exp(ıθ)+B∗(X ,T,τ)exp(−ıθ),

where
θ = kx−ωt,X = εx,T = εt,τ = ε2t,

and
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Then the solution for U1,θ is obtained from Eq. (12),
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2ε2Ql
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)
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while the solution for V2 is obtained from Eq. (15)
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16−5l2k2 (BY exp(ıθ)−B∗
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Equation (14) at the next order ε2 is
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(21)
The r.h.s. in Eq. (21) gives rise to the secular terms in the solution for U22. To avoid secular terms, one has
to equate to zero coefficients at exp(±ıθ) that results in an equation for B,

2MωBT − 7Cl2

4
kBX = 0.

It means that B = B(ζ ,τ), where

ζ = X − 7Cl2k
8Mω

T. (22)

Then the r.h.s. in Eq. (21) is zero that allows us to obtain the solution U22 = 0.
Substituting Eqs (19) and (20) into Eq. (21) at order ε3 one obtains that the absence of secular terms

results in the equation for B in the form of the two-dimensional nonlinear Schrödinger equation
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This equation has been obtained and studied for the description of the deep water surface waves [5,9].
Certainly, the plane wave solution may be obtained where the sign of the product of the coefficients at
nonlinear and dispersive terms defines the existence of either bright or dark solitons. Transverse instability
of the plane solitary wave has been studied numerically in [9] and asymptotically in [10]. In the paper a
large variety of the methods is employed and various kinds of instabilities revealed for bright and dark plane
solitary waves.

The solution for V1 is obtained from Eq. (13) using the solution for U2.

6. CONCLUSIONS

The solution for the plane longitudinal wave in a hexagonal lattice from [4] is extended by the case of
weakly transverse variations. Use of two continuum limits allows us to obtain different model equations.
Thus, the Kadomtsev–Petviashvili equation arises for the case of long wavelength while a two-dimensional
generalization of the two-dimensional nonlinear Schrödinger equation appears when the short wavelength
case is considered. The solution in the last case describes not only the macro-strain evolution but also
internal variations in the structure of the material.

The fact that weakly transverse equations have the form of familiar equations allows us to study
transverse instability of longitudinal strain waves using already known solutions [5,10]; in particular, making
conclusions about transverse stability in the first long-wave continuum limit.

Only weakly nonlinear theory is considered in the paper. Recently, another form (through trigonometric
functions) of nonlinear terms has been suggested to account for large strains in a one-dimensional diatomic
lattice [11,12]. Similar generalization for a hexagonal lattice will be done in due time.
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Mittelineaarsete pikilainete ristsuunaline ebastabiilsus heksagonaalses võres

Alexey Porubov, Igor Andrianov ja Berndt Markert

Kristallides levivate mittelineaarsete lainete uurimisel kasutatakse nii pideva keskkonna teooriatel põhine-
vaid kui ka diskreetseid mudeleid. Algsest diskreetsest heksagonaalse võre mudelist pideva keskkonna teoo-
riale vastavate ja nõrgalt ristsuunas levivaid pikilaineid kirjeldavate võrrandite tuletamiseks on kasutusel
mitmeid pideva keskkonna piirteooriaid. Käesolevas artiklis on näidatud, et pika lainepikkuse piirteooria
rakendamine annab tulemuseks Kadomtsevi-Petviashvili võrrandi, kuid lühikese lainepikkuse piirteooria
rakendamise korral saadakse tulemuseks mittelineaarne kahemõõtmeline Schrödingeri võrrand.


