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Abstract. Most theoretical results about turbulent mixing have been obtained for ideal flows that are delta-correlated in time. As
is often believed, those ideal flows are, with regard to mixing, very similar to real flows with a finite correlation time. However,
recent results show that these two cases may differ considerably. In this article we study the effects of finite correlation time in a
chaotic smooth statistically isotropic two-dimensional velocity field. As mixing is predominantly determined by the statistics of
the stretching of material elements (e.g. lines “painted” onto a liquid), in this article we focus on the characteristics describing such
stretching: finite-time Lyapunov exponents and the Lyapunov dimension. For these quantities, we derive analytical expressions
as functions of the correlation time and the compressibility of the velocity field, and we investigate these expressions numerically.
The results agree well with numerical results of other authors, and are useful for understanding several physical phenomena, e.g.
patchiness of pollution spreading on an ocean and kinematic magnetic dynamos.
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1. INTRODUCTION

Turbulent mixing of passive fields affects our daily life
in various ways and plays an important role under a
wide variety of physical conditions. Classical examples
of scalar fields that can be considered in a good
approximation to be passive and that are often subject
to turbulent mixing include the temperature of fluids,
the concentration of pollutants, nutrients, oxygen, etc.
Therefore it is not surprising that turbulent advection
has been studied extensively over several decades,
theoretically, numerically, and experimentally. For more
examples and details, cf. reviews [1–7].

An example of a passive vector field that is subject
to a turbulent mixing is provided by the linear stage of
the action of magnetic dynamos, for a review see [8].
All the cosmic magnetic fields are due to the action of
magnetic dynamos: when large masses of cosmic plasma
are moving, the magnetic Reynolds number is very large
and resistivity can be neglected: the magnetic flux is
conserved through material loops. In three dimensions,
due to the approximate incompressibility of the plasma

and the exponential stretching of material lines, the
cross-sectional area of magnetic flux tubes decreases
exponentially, which gives rise to the amplification of
the magnetic field. If there is no macroscopic field
initially, molecular fluctuating fields will be amplified;
at the initial linear stage, the magnetic pressure is
negligible as compared with the thermal pressure, hence
the magnetic field is passive. Note that for a working
magnetic dynamo, in addition to the stretching of
material lines, the so-called twist–fold action is also
required (cf. [8]). In the context of the current paper it
is worth noting that the theoretical results regarding the
linear magnetic dynamos at sub-Kolmogorov scale rely
upon the Lyapunov exponents of chaotic flows (cf. [9]).

The theoretical studies have been based almost
exclusively on the idealized model of the Kraichnan
flows [10], which are delta-correlated in time (i.e. with a
zero correlation time). However, during the last decade,
numerical evidence has been gathered showing that the
match is far from perfect: in the case of compressible
flows such as the flows at the free-slip surface of a
turbulent liquid, the theoretical predictions based on
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the Kraichnan flows are incorrect, cf. [11,12]. Recent
theoretical studies [13] have not been able to explain the
semi-numerical findings of [11,12].

In the case of chaotic flows with smooth streamlines,
the properties of stretching statistics are most con-
veniently described in terms of finite-time Lyapunov
exponents (FTLEs), which describe, roughly speaking,
how the logarithms of the length, width, and height
of a material parallelepiped will evolve. It is well
known that the probability density function of FTLEs
of smooth statistically isotropic Kraichnan flows evolves
according to the convective–diffusive equation with
constant coefficients; the values of these constants
can be expressed in terms of the dimensionality and
compressibility of the flow [1,14]. It is the ratio of
the coefficients of the convective and diffusive terms of
this equation that defines the qualitative features of the
mixing process; the coefficients themselves are just the
largest FTLE and its variance. In the case of a sufficiently
strong compressibility, the largest FTLE can become
negative, which gives rise to a fractal clustering of dye
particles [15–17].

In what follows, we derive analytical expressions for
the FTLEs and the Lyapunov dimension as functions of
compressibility and show that the results are in a good
agreement with earlier simulation results.

2. THE MODEL AND METHOD

In the case of smooth chaotic velocity fields, the largest
FTLE can be found as the average increment of the
length of material vectors during the correlation time T
of the velocity field in logarithmic scale divided by T
(cf. [18–20]). This increment is defined by the strain
tensor of a pair of material vectors, i.e. the time integral
of the velocity gradient tensor, during the correlation
time. Since what is important is only the time integral
and not the detailed behaviour as a function of time, we
shall assume for the sake of simplicity that the velocity
gradient tensor is piece-wise constant: we assume that it
is constant during the correlation time T , at the end of
which it takes a new random and uncorrelated value.

In the case of compressible fields, the overall surface
area of the basin occupied by the convective field is still
constant, therefore we need to have both divergent and
convergent regions present simultaneously. In order to
make analytical progress, we adopt the simplest possible
geometry and assume that the basin is divided into two
regions, one with a positive velocity divergence d1 and
the other with a negative divergence d2 = −d1. In order
to keep velocities bounded, we add another constraint,
namely that the determinants of the velocity gradients
add up to zero.

Material vectors are stretched by the velocity
gradients ∇v1 and ∇v2. If a material vector x spends
a time t in a velocity field v, then it transforms into
the vector Dx, where the matrix D = et∇v. As the
real symmetric matrix DT D is positive semidefinite,

its eigenvalues are real and non-negative. Thus, it is
diagonalizable via a spatial rotation into diag(p2,q2),
where p2 and q2 are the eigenvalues of DT D. Then the
squared length of the unit vector x = ( cosα

sinα ) transforms
into

`2 = xT DT Dx = p2 cos2 α +q2 sin2 α . (1)

The finite-time characteristic exponent (FTCE) for
the length of a material vector spending time t in a
constant velocity gradient, which corresponds to pi and
qi, is given by the following average over directions:

Λi(t) =
〈ln`〉

t
=

1
2πt

∫ 2π

0
ln

√
xT DT

i Dix dα

=
1
πt

∫ π
2

0
ln

(
p2

i cos2 α +q2
i sin2 α

)
dα

=
1
t

ln
pi +qi

2
for pi,qi > 0. (2)

(The values of pi and qi also depend implicitly on t.
The integral is given in [21, eq. 2.6.38.4] and explained
briefly in the appendix of this article.) The concept
of FTCE for the length was introduced in [18]. While
asymptotically it becomes equal to the largest Lyapunov
exponent, for finite times there is a small difference
between the largest FTLE and the FTCE for the length
(FTCE is a weighted average of all the FTLEs where the
largest FTLE dominates). If the material vector spends
time t1 in environment 1 and time t2 in environment 2,
then its FTCE is the weighted average

Λ12(t1, t2) =
t1Λ1(t1)+ t2Λ2(t2)

t1 + t2
. (3)

Let us define di = ∇ · vi = Tr∇vi and order the two
environments so that d1 ≥ 0 (region of expansion) and
d2 ≤ 0 (region of contraction). Particles from region 1
are eventually expelled into region 2; any particle that has
entered region 2 stays there forever. Next, we consider
the evolution of N0 particles starting from region 1,
which has an area A, and we wish to find the number
N1(t) of them remaining in region 1 after time t. By
Gauss’s theorem, the flux of the particles out of region 1
is

−dN1

dt
=

∫∫

reg. 1
∇ ·

(
N1v
A

)
dA = N1∇ ·v1 = N1d1. (4)

Therefore,
N1(t) = N0e−d1t . (5)

The average FTCE for material vectors that start from
region 1 and end up in region 2, calculated for total time
T and averaged over such material vectors whose number
is N12, is

〈Λ12〉= 1
N12

∫
Λ12 dN1 =

N0d1

N12

∫ T

0
Λ12(t,T−t)e−d1t dt,

(6)
where N12 = N0 −N1(T ). Adding the N1(T ) material
vectors that spend all the time T in region 1 and the other
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N0 vectors that spend all the time in region 2, we obtain
the average FTCE for the length of a material vector:

λ1 =
N1(T )Λ1(T )+N0Λ2(T )+N12〈Λ12〉

2N0

=
1
2

[
e−d1T Λ1(T )+Λ2(T )

+d1

∫ T

0
Λ12(t,T − t)e−d1t dt

]
. (7)

This λ1 is also the FTLE for the longer semiaxis of
a material ellipse. To obtain the FTLE for its shorter
semiaxis, λ2, we first find the FTCE for its area, λA.
Formula (5) can be inverted to say that a material area in
region 1 grows proportionally to ed1t , therefore the FTCE
for a material area staying in region 1 is d1. For an area
staying in region 2, the corresponding value is d2 =−d1.
Analogously to Eq. (3), the FTCE for a material area that
spends time t1 in region 1 and time t2 in region 2 is the
weighted average

ΛA12(t1, t2) =
t1d1 + t2(−d1)

t1 + t2
=

t1− t2
t1 + t2

d1. (8)

The derivation of Eq. (7) readily generalizes to material
areas. Substituting Λ1 by d1, Λ2 by −d1, Λ12 by ΛA12
and taking the integral, we obtain the FTCE for areas,

λA =
1
T

(
1−d1T − e−d1T

)
. (9)

From this, we can calculate the FTLE for the shorter
semiaxis of a material ellipse and the Lyapunov
dimension:

λ2 = λA−λ1, (10)

DL = 1+
λ1

‖λ2‖ . (11)

For every point in our numerical calculations, we
generated ∇v1 as a random matrix whose every entry is
sampled from a uniform distribution between −5 and 5,
and flipped its sign if its trace turned out to be negative
(to ensure that region 1 is expelling). Then we calculated
the compressibility

℘=
(Tr∇v1)2

‖∇v1‖2 (12)

(with ‖·‖ being the Frobenius norm), and chose ∇v2, if
it existed, as one of the four unique matrices of the form(

a b
−b d

)
that give the same compressibility ℘, but whose

determinant and trace fulfill the conditions

det∇v2 =−det∇v1,
Tr∇v2 =−Tr∇v1.

(13)

If no such real ∇v2 existed, we discarded the whole data
point. Constraining ∇v2 into being a sum of a diagonal
and an antisymmetric matrix did not cause any loss of
generality, because any real-valued tensor can be rotated
into such a form (its symmetric part is diagonalizable
by an orthogonal transformation), and rotation does not
influence the FTLEs.

It is useful to express the correlation time through
a dimensionless quantity called the Kubo number. For
a given Kubo number K, the correlation time of our
velocity field is

T =
K

‖∇v1‖ (14)

because our construction implies that ‖∇v1‖ = ‖∇v2‖.
(Equivalently, we could have normed the velocity
gradients by ‖∇v1‖ and equated the Kubo number and
the correlation time.) This relation follows the definition
used in article [13]: there K = u0T/η with u0 being
the typical speed of the flow and η being its correlation
length.

By using Eq. (2) and expressing p and q in terms
of the matrix elements of the velocity gradient, it can be
shown that for a general velocity gradient ∇vi =

(
a b
c d

)

Λi(t) =
a+d

2

+
1
2t

ln
∆− (b− c)2 +

[
∆+(b− c)2

]
cosh

(
t
√

∆
)

2∆
,

(15)

where ∆ = 4bc + (a− d)2 is the discriminant of the
eigenvalue equation for the velocity gradient. We used
it in Eq. (7) to compute the larger FTLE λ1; as the
remaining integral in that equation could be evaluated
analytically into a complicated expression involving
hypergeometric functions, we preferred to calculate the
integral numerically. Finally, we used Eqs (9)–(11) to
obtain λA, λ2, and DL.

3. RESULTS AND SPECIAL CASES

The numerical results thus obtained are depicted in
Fig. 1 together with the exact solution for delta-
correlated flows (for K = 0), DL = 2/(1 + 2℘). (This
prediction of the Kraichnan model is given, e.g. in [11,
eq. (3)].) Just as in the simulations in [11], when
the correlation time grows, the Lyapunov dimension is
reduced for small compressibilities and increased for
large compressibilities. However, contrary to the cited
article, we observe that DL is not completely determined
by ℘. Instead, there is a range of possible values, with
lower Lyapunov dimensions occurring more often in our
statistical samples. If we averaged our results for a fixed
compressibility, we would get a graph that would be very
similar to the cited one, but such an averaging needs
motivation.
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Fig. 1. Lyapunov dimension as a function of compressibility. Grey dots depict the observed pairs of the Lyapunov dimension DL
and compressibility ℘ for different Kubo numbers K. Points under DL = 1 are in the “strongly compressible” regime. Continuous
lines plot the Kraichnan relationship DL = 2/(1+2℘).

At the compressibility ℘ = 1, the point clouds
condense into a single point whose location depends on
the Kubo number. The reason is that conditions (13)
constrain the velocity gradients into the form

∇v1 =−∇v2 ∝
(

1 0
0 0

)
(16)

or rotations thereof. For such a velocity field, the
discriminants ∆1 = ∆2 = 1, and Eq. (15) gives

Λ1 or 2(k) =±1
2

+
1
2k

ln
1+ coshk

2
, (17)

where the “+” of the “±” is for Λ1 and the “−” is for Λ2.
Substituting those into Eq. (3) then gives

Λ12(k,K− k)

=
k
K
− 1

2
+

1
2K

(
ln

1+ coshk
2

+ ln
1+ cosh(K− k)

2

)

=
1
K

(
ln

ek +1
2

+ ln
ek−K +1

2

)
; (18)

after substituting this into (6), we obtain

〈Λ12〉 ∝
∫ K

0

(
ln

ek +1
2

+ ln
ek−K +1

2

)
e−k dk = 0.

(19)
(This integral can be quite simply proved by showing that
its derivative with respect to K is zero.) This allows us
to find, for the case ℘= 1, analytical expressions for the
FTLEs and the Lyapunov dimension, using Eqs (7) and
(9)–(11):

λ1 =
1

2T

(
ln

e−K +1
2

+ e−K ln
eK +1

2

)
, (20)

λA = λ1 +λ2 =
1
T

(
1−K− e−K)

, (21)

DL = 2− 4
[
1+ eK(K−1)

]

eK(S +2K−4)+S +4
, (22)
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where S = K + 2lncosh K
2 . For small Kubo numbers,

DL ∼ 2
3 + 2

27 K; for large Kubo numbers, DL tends to
unity as DL ∼ 1− ln2

2K−2−ln2 .

The fact that there is a range of possible DL for every
℘ suggests that there may be another parameter that,
together with ℘, determines the Lyapunov dimension
uniquely. The parameter must be dimensionless, and it
must not change if the velocity fields are rotated. As
it appears, (det∇v1)/‖∇v1‖2 is a good choice. (To
generalize this extra parameter to arbitrary velocity fields
with non-constant gradients, an appropriate choice would
be its root-mean-square.) Indeed, when it is added as
the third dimension to the plots, it can be seen that the
simulated points form a smooth surface. The shape of
the surface is depicted in Fig. 2.

(a)

(b)

Fig. 2. Contour lines of the Lyapunov dimension DL. The
darkest shading corresponds to DL ≈ 0.8 on (a) and DL ≈ 0
on (b); at the lightest shading, DL ≈ 2. Outside the shaded
triangular area it is impossible to fulfill conditions (13).

As is evident from the contour plots, when the
correlation time T becomes large (as does the Kubo
number K), the contour lines tend to straighten and fan
out from the point where ℘ = det∇v1 = 0. In the
lower left corner of the plots there is a triangular region
where the Lyapunov dimension practically vanishes,
and there is a characteristic line above which it grows
monotonically with the slope. All such behaviour can be
characterized analytically.

Namely, after a long correlation time, essentially
all the particles have entered the region of contraction
(region 2) and stayed there for a long time. This
means that all their characteristic dynamics is governed
by the properties of the environment in the region
of contraction, and the contributions of the region of
expansion can be neglected. Therefore, for a large
correlation time, λ1 ∼ Λ2(T ). Looking again at Eq. (15),
it can be seen that the qualitative behaviour of Λ2(T )
depends on the sign of the discriminant of the eigenvalue
equation for ∇v2. Let the discriminant be ∆2. For
∆2 > 0, the hyperbolic cosine grows exponentially, and
λ1 ∼ d2 +

√
∆2 where d2 is the divergence of v2, as

previously. On the other hand, for ∆2 ≤ 0, only the first
term remains: in this case, λ1 ∼ d2. In both cases, the
FTCE for areas, λA ∼ d2.

The sign of ∆2 is uniquely determined by the
parameter

δ2 =
det∇v2

(Tr∇v2)
2 =

det∇v2

℘‖∇v2‖2 , (23)

or equivalently by its counterpart δ1, calculated from v1,
that by conditions (13) equals −δ2. The discriminant
∆2 is positive if and only if δ2 < 1/4. The value of the
Lyapunov dimension at the limit of long correlation times
is also determined by δ2:

DL ∼
{

0 for δ2 ≥ 1
4 ,

2− 1−
√

1−4δ2
2δ2

for δ2 < 1
4 .

(24)

Indeed, as det∇v2 =−det∇v1, the isolines of DL are the
(straight) lines where the ratio δ1 – the slope of a contour
line in Fig. 2b – is constant. The region of DL ∼ 0 is
bordered by the slope δ1 =−1/4.

4. CONCLUSION

We have derived analytically the finite-time Lyapunov
exponents in smooth chaotic statistically isotropic
velocity fields and used these results to express the
Lyapunov dimension as a function of the compressibility
of the velocity field. These results show that there is a
clear departure between the ideal Kraichnan flows and
the real time-correlated flows. Furthermore, unlike in the
case of Kraichnan flows, the Lyapunov exponent is not
defined purely by the compressibility, but it depends also
on other statistical features of the velocity gradient tensor
(the root-mean-square of its determinant can be used as
a parameter).
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Our results are in a good agreement with earlier
numerical studies [11,12]. We foresee use of our findings
in the context of marine applications: first of all, for the
studies of the pollution transport by sea currents on the
free water surface, cf. [22].

As a further development, our approach will be
extended to the calculation of the variance of the finite-
time Lyapunov exponents and to the non-smooth velocity
fields using the chaotic triplet-map model, cf. [23–25].
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APPENDIX

DERIVATION OF AN INTEGRAL

The integral in Eq. (2) equals

∫ π
2

0
ln

(
p2 cos2 α +q2 sin2 α

)
dα = π ln

p+q
2

(25)

for p,q > 0. This identity (given also in [21,
eq. 2.6.38.4]) can be proved by the following steps. First
we factor pq out of the argument of the logarithm, giving
us a sum of two logarithms, one independent of α and
the other depending on just one parameter, y = p/q.
No generality is lost by assuming that y > 1. Then
we change the integration variable to z = eiα , which
gives us a contour integral over the circle |z| = 1 on
the complex plane. This encircles a singularity at z = 0

and two straight branch cuts between 0 and ±i
√

y2−1
y2+1 .

By Cauchy’s integral theorem and without changing the
value of the integral, the integration contour may be
contracted around the branch cuts. Near z = 0, the
contour must be left at an infinitesimal but finite distance
from zero. The integrals along the parts of the contour
can then be calculated by knowing the height of the
branch cut (via the properties of the complex logarithm);
the integrals around the distant ends of the cuts tend to
zero.
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Lõpliku korrelatsiooniaja mõjust turbulentsele segunemisele siledates kaootilistes
kokkusurutavates kiirusväljades

Siim Ainsaar ja Jaan Kalda

Enamik teoreetilisi tulemusi turbulentse segunemise kohta on saadud ideaalsete, ajas delta-korreleeritud voolude
jaoks. Üldlevinud arvamuse järgi on ideaalsed voolud segunemise seisukohalt väga sarnased reaalsetega, lõpliku
korrelatsiooniajaga vooludega. Hiljutised uurimistulemused näitavad, et need kaks juhtumit võivad siiski oluliselt
erineda.

Käesolevas artiklis on analüütiliselt uuritud lõplikust korrelatsiooniajast tulenevaid efekte kaootilises siledas
statistiliselt isotroopses kahemõõtmelises kiirusväljas. Kuivõrd segunemise omadused on määratud eeskätt materiaal-
sete elementide (näiteks vedelikule “maalitud” jooned) venitamise statistikaga, siis keskendume niisugust venitamist
kirjeldavatele karakteristikutele: lõpliku aja Ljapunovi astmenäitajatele ja Ljapunovi dimensioonile. Nimetatud
suuruste jaoks tuletame analüütilised avaldised funktsioonina korrelatsiooniajast ja kiirusvälja kokkusurutavusest ning
uurime neid avaldisi numbriliselt. Tulemused on heas kooskõlas teiste autorite varasemate numbriliste tulemustega
ja on olulised mitmete füüsikaliste nähtuste mõistmisel, näiteks ookeanipinnal leviva reostuse “klombilisuse”
(patchiness) ning kinemaatilise magnetdünamo jaoks.


