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Abstract. It is proved that each group of order 32, which has a maximal subgroup isomorphic to C4×C2×C2, is determined by its
endomorphism semigroup in the class of all groups.
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1. INTRODUCTION

It is well known that all endomorphisms of an Abelian group form a ring and many of its properties can be
characterized by this ring. An excellent overview of the present situation in the theory of endomorphism
rings of groups is given by Krylov, Mikhalev, and Tuganbaev [6]. All endomorphisms of an arbitrary group
form only a semigroup. The theory of endomorphism semigroups of groups is quite modestly developed.
In a number of our papers we have made efforts to describe some properties of groups by the properties of
their endomorphism semigroups. For example, we have proved that many well-known classes of groups are
determined by their endomorphism semigroups in the class of all groups. Note that if G is a fixed group
and an isomorphism of semigroups End(G) and End(H), where H is an arbitrary group, always implies
an isomorphism of G and H, we say that the group G is determined by its endomorphism semigroup in the
class of all groups. Some of such groups are finite Abelian groups ([7], Theorem 4.2), generalized quaternion
groups ([8], Corollary 1), torsion-free divisible Abelian groups ([10], Theorem 1), etc. On the other hand,
there exist many examples of groups that are not determined by their endomorphism semigroups in the
class of all groups. For example, the following result of Corner [2] is well known: any countable, reduced,
torsion-free, associative ring with unity is an endomorphism ring for a continual number of countable,
reduced, torsion-free Abelian groups. An example of non-Abelian groups that are not determined by their
endomorphism semigroups in the class of all groups is the following: the groups

G = 〈a, b | b3 = a91 = 1, b−1ab = a16〉= 〈a〉h 〈b〉

and
H = 〈c, d | d3 = c91 = 1, d−1cd = c9〉= 〈c〉h 〈d〉

are non-isomorphic but their endomorphism semigroups are isomorphic [9].
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We know a complete answer to this problem for finite groups of order less than 32. It was proved in [13]
that among the finite groups of order less than 32 only the alternating group A4 (also called the tetrahedral
group) and the binary tetrahedral group 〈a, b | b3 = 1, aba = bab〉 are not determined by their endomorphism
semigroups in the class of all groups. These two groups are non-isomorphic but their endomorphism
semigroups are isomorphic. It was natural to consider the groups of order 32. All groups of order 32
were described by Hall and Senior [5]. There exist exactly 51 non-isomorphic groups of order 32. In [5],
these groups are numbered by 1, 2, . . . , 51. We shall mark these groups by G1, G2, . . . , G51, respectively.
The groups G1−G7 are Abelian, and, therefore, are determined by their endomorphism semigroups in the
class of all groups ([7], Theorem 4.2). In [3], it was proved that the groups of order 32, presentable in the
form (C4×C4)hC2 (Ck – the cyclic group of order k), are determined by their endomorphism semigroups
in the class of all groups. The groups of this type are G3, G14, G16, G31, G34, G39, G41. In [4], it was proved
that the groups of order 32 presentable in the form (C8×C2)hC2 are determined by their endomorphism
semigroups in the class of all groups. The groups of this type are G4, G17, G20, G26, G27.

In this paper, we consider the groups of order 32 that have a maximal subgroup isomorphic to
C4×C2×C2 and prove the following theorem:

Theorem 1.1. Each group of order 32, which has a maximal subgroup isomorphic to C4 ×C2 ×C2, is
determined by its endomorphism semigroup in the class of all groups.

The groups of order 32 which have a maximal subgroup isomorphic to C4×C2×C2 are:

G2, G3, G4, G8, G9, G10, G11, G12, G13, G14, G16, G18, G20, G36, G37, G38.

To prove the theorem, the characterization of these groups by their endomorphism semigroups will be given.
These characterization properties, which are preserved by isomorphisms of endomorphism semigroups, will
then be used in the proofs.

We shall use the following notations:
G – a group;
End(G) – the endomorphism semigroup of G;
Ck – the cyclic group of order k;
Zk – the ring of residual classes modulo k;
〈K, . . . , g, . . .〉 – the subgroup generated by subsets K, . . . and elements g, . . .;
[a, b] = a−1b−1ab (a, b ∈ G);
G ′ – the commutator-group of G;
ĝ – the inner automorphism of G, generated by an element g ∈ G;
I(G) – the set of all idempotents of End(G);
K(x) = {z ∈ End(G) | zx = xz = z};
P(x) = {z ∈ End(G) | zx = xz = x};
J(x) = {z ∈ End(G) | zx = xz = 0};
V (x) = {z ∈ Aut(G) | zx = x};
H(x) = {z ∈ End(G) | xz = z, zx = 0};
[x] = {z ∈ I(G) | xz = z, zx = x}, x ∈ I(G).

The sets K(x), V (x), P(x), and J(x) are subsemigroups of End(G), however, V (x) is a subgroup of
Aut(G). We shall write the mapping right from the element on which it acts.

2. GROUPS THAT HAVE A MAXIMAL SUBGROUP C4×C2×C2

In this section, using results obtained by Hall and Senior [5], the list of all groups of order 32 that have a
maximal subgroup C4×C2×C2 is given. To this end, denote:
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• Q = 〈a, b | a4 = 1, b2 = a2, b−1ab = a−1〉 – the quaternion group;
• D4 = 〈a, b | a4 = b2 = 1, b−1ab = a−1〉 – the dihedral group of order 8;
• G16,1 = 〈a, b, c | a4 = b2 = c2 = 1, ab = ba, c−1bc = ba2, c−1ac = a−1〉;
• G16,2 = 〈a, b, c | a4 = b2 = c2 = 1, ab = ba, bc = cb, c−1ac = a−1b〉;
• G16,3 = 〈a, b | a4 = b4 = 1, b−1ab = a−1〉;
• G16,4 = 〈a, b | a8 = b2 = 1, b−1ab = a5〉.
The groups G16,1−G16,4 are groups of order 16.

The groups of order 32 that have a maximal subgroup isomorphic to C4×C2×C2 are:
• G2 = C4×C2×C2×C2, G3 = C4×C4×C2, G4 = C2×C2×C8,
• G8 = C2×C2×D4, G9 = C2×C2×Q, G10 = C2×G16,1,
• G11 = C2×G16,2, G12 = C2×G16,3, G13 = C2×G16,4, G14 = C4×D4,
• G16 = 〈a, b, c | a4 = b4 = c2 = 1, ab = ba, bc = cb, c−1ac = ab2〉 = (〈a〉×〈b〉)h 〈c〉= (C4×C4)hC2,
• G18 = 〈a, b, c | a4 = b2 = c4 = 1, ab = ba, bc = cb, c−1ac = ab〉,
• G20 = 〈a, b, c | a8 = b2 = c2 = 1, ab = ba, bc = cb, c−1ac = ab〉 = (〈a〉×〈b〉)h 〈c〉= (C8×C2)hC2,
• G36 = 〈a, b, c, d | a4 = b2 = c2 = d2 = 1, ab = ba, ac = ca, bc = cb, dc = cd, d−1ad = a−1, d−1bd = bc〉,
• G37 = 〈a, b, c, d | a4 = b2 = c2 = d4 = 1, ab = ba, ac = ca, bc = cb, dc = cd, d2 = a2, d−1ad = a−1,

d−1bd = bc〉,
• G38 = 〈a, b, c, d | a4 = b2 = c2 = d2 = 1, ab = ba, ac = ca, bc = cb, dc = cd, d−1ad = ac, d−1bd = ba2〉.

It is known that the following groups are determined by their endomorphism semigroups in the class
of all groups: finite Abelian groups ([7], Theorem 4.2), dihedral 2-groups ([9], Theorem 3.1), generalized
quaternion groups [8], finite groups of order 16 [12]. On the other hand, if the groups G1, G2, . . . , Gn are
determined by their endomorphism semigroups in the class of all groups, then so is their direct product
G1×G2× . . .×Gn ([7], Theorem 1.13). Therefore, the groups G2−G4 and G8−G14 are determined by
their endomorphism semigroups in the class of all groups. The groups G16 and G20 are also determined by
their endomorphism semigroups in the class of all groups [4,12]. To prove Theorem 1.1, we have to prove
in addition that the groups G18, G36, G37, and G38 are determined by their endomorphism semigroups in the
class of all groups. It is done in Theorems 4.2, 5.2, 6.2, and 7.2.

3. PRELIMINARY LEMMAS

For convenience of reference, let us recall some known facts that will be used in the proofs of our main
results. We omit the proofs, because these are straightforward corollaries from the definitions.

Lemma 3.1. If x ∈ I(G), then G = Kerxh Imx and Imx = {g ∈ G | gx = g}.

Lemma 3.2. If x ∈ I(G), then

K(x) = {y ∈ End(G) | (Imx)y⊂ Imx, (Kerx)y = 〈1〉}

and K(x) is a subsemigroup with the unity x of End(G) which is canonically isomorphic to End(Imx). In
this isomorphism element y of K(x) corresponds to its restriction on the subgroup Imx of G.

Lemma 3.3. If x ∈ I(G), then

J(x) = {z ∈ End(G) | (Imx)z = 〈1〉, (Kerx)z⊂ Kerx}.

Lemma 3.4. If x, y ∈ I(G) and xy = yx = 0, then

G = ((Kerx∩Kery)h Imx)h Imy = ((Kerx∩Kery)h Imy)h Imx,

Kerx = (Kerx∩Kery)h Imy, Kery = (Kerx∩Kery)h Imx.
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Lemma 3.5. If x ∈ End(G) and Imx is Abelian, then ĝ ∈V (x) for each g ∈ G.

Lemma 3.6. If x ∈ I(G), then

H(x) = {y ∈ End(G) | (Imx)y⊂ Kerx, (Kerx)y = 〈1〉}.

Lemma 3.7. If x ∈ I(G), then

P(x) = {y ∈ End(G) | y|Imx = 1|Imx, (Kerx)y⊂ Kerx}.

Lemma 3.8. If x ∈ I(G), then [x] = {y ∈ I(G) | Kerx = Kery}.

4. GROUP G18

In this section, we shall characterize the group

G18 = 〈a, b, c | a4 = b2 = c4 = 1, ab = ba, bc = cb, c−1ac = ab〉
= (〈a〉×〈b〉)h 〈c〉= (〈c〉×〈b〉)h 〈a〉 ∼= (C4×C2)hC4

by its endomorphism semigroup.

Theorem 4.1. A finite group G is isomorphic to G18 if and only if there exist x, y ∈ I(G) such that the
following properties hold:
10 K(x)∼= K(y)∼= End(C4);
20 xy = yx = 0;
30 J(x)∩ J(y) = {0};
40 V (x) is a 2-group;
50 |{u ∈ End(G) | xu = u, ux = uy = 0}|= 2.

Proof. Necessity. Let G = G18. Denote by x and y the projections of G onto its subgroups 〈c〉 and 〈a〉,
respectively. Then x, y ∈ I(G). We shall prove that x and y satisfy properties 10–50.

By Lemma 3.2 and the definition of x and y, properties 10 and 20 hold. By Lemma 3.3, J(x)∩ J(y)
consists of z ∈ End(G) such that

cz = az = 1, bz = bi, i ∈ Z2. (4.1)

Map (4.1) preserves the generating relations of G if and only if i = 0, i.e., z = 0. Therefore, J(x)∩J(y) = {0}
and property 30 is true. The subgroup V (x) of Aut(G) consists of z ∈ Aut(G) such that g−1 ·gz ∈ Kerx for
each g ∈ G. Therefore, z ∈V (x) maps on generators of G as follows:

cz = caib j, az = akbl, bz = asbt ; i, k, s ∈ Z4; j, l, t ∈ Z2. (4.2)

Map (4.2) is an automorphism of G if and only if

s = 0, t = 1, k ≡ 1(mod2).

It follows that |V (x)|= 4 ·2 ·2 ·2 = 25, i.e., V (x) is a 2-group and property 40 is true.
Assume that u ∈ End(G) and xu = u, ux = uy = 0. Then

au = bu = 1, cu = bi, i ∈ Z2. (4.3)

Map (4.3) is an endomorphism of G for each i ∈ Z2. It follows from here that property 50 holds. The
necessity is proved.
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Sufficiency. Let G be a finite group and let there exist x, y ∈ I(G) which satisfy properties 10–50 of the
theorem. Our aim is to prove that G∼= G18.

Lemma 3.2 and property 10 imply that

End(Imx)∼= End(Imy)∼= End(C4).

Since each finite Abelian group is determined by its endomorphism semigroup in the class of all groups ([7],
Theorem 4.2), we have

Imx = 〈c〉 ∼= C4, Imy = 〈a〉 ∼= C4

for some c, a ∈ G. By Lemma 3.4,

G = (N h 〈a〉)h 〈c〉= (N h 〈a〉)h 〈c〉,

where
N = Kerx∩Kery, Kerx = N h 〈a〉, Kery = N h 〈c〉.

In view of Lemma 3.5 and property 40, ĝ = 1 for each 2′-element g of G. Hence all 2′-elements of G
belong into its centre Z(G). Therefore, the group G splits into the direct product G = G2′ ×G2 of its Hall
2′-subgroup G2′ and Sylow 2-subgroup G2. Denote by z the projection of G onto its subgroup G2′ . Then
z ∈ J(x)∩ J(y), and, by property 30, z = 0, i.e. G2′ = 〈1〉 and G is a 2-group.

Each homomorphism v : Imx = 〈c〉 −→ N induces an endomorphism u of G by setting gu = 1, g ∈
N h 〈a〉, cu = cv. This endomorphism u satisfies equalities xu = u, ux = uy = 0. By 50, we have two
homomorphisms v of such kind. Therefore, the subgroup N of G contains only one element of order 2 and
does not have any element of order 4. By [14], Theorem 5.46, N is a cyclic group of order 2:

N = 〈b〉 ∼= C2, b ∈ G.

Since N is an invariant subgroup of G, we have

ab = ba, cb = bc.

Elements a and c do not commute, because otherwise G = N×〈a〉×〈c〉 and the projection z of G onto N
is a non-zero element of J(x)∩ J(y), which contradicts property 30. In view of (2.5), a−1c−1ac ∈ N. Hence
a−1c−1ac = b and c−1ac = ab. Consequently,

G = 〈a, b, c | a4 = b2 = c4 = 1, ab = ba, bc = cb, c−1ac = ab〉

and the groups G and G18 are isomorphic. The sufficiency is proved and so is the theorem.

Theorem 4.2. The group G18 is determined by its endomorphism semigroup in the class of all groups.

Proof. Let G∗ be a group such that the endomorphism semigroups of G∗ and G18 are isomorphic:

End(G∗)∼= End(G18). (4.4)

Denote by z∗ the image of z ∈ End(G18) in isomorphism (4.4). Since End(G∗) is finite, so is G∗ ([1],
Theorem 2). By Theorem 4.1, there exist x, y ∈ I(G18), satisfying properties 10–50 of Theorem 4.1. These
properties are formulated so that they are preserved in isomorphism (4.4). Therefore, the idempotents x∗
and y∗ of End(G∗) satisfy properties, similar to properties 10–50 (it is necessary to change everywhere
z ∈ End(G18) by z∗ ∈ End(G∗)). Using now Theorem 4.1 for G∗, it follows that G∗ and G18 are isomorphic.
The theorem is proved.
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5. GROUP G36

In this section, we shall characterize the group

G36 = 〈a, b, c, d | a4 = b2 = c2 = d2 = 1, ab = ba, ac = ca, bc = cb, dc = cd, d−1ad = a−1, d−1bd = bc〉

by its endomorphism semigroup. The group G36 splits into the following semidirect products:

G36 = (〈a〉×〈b〉×〈c〉)h 〈d〉 ∼= (C4×C2×C2)hC2,

G36 = (〈b〉×〈c〉)h (〈a〉h 〈d〉)∼= (C2×C2)h (C4 hC2),

G36 = 〈a〉h ((〈b〉×〈c〉)h 〈d〉)∼= C4 h ((C2×C2)hC2).

We will prove that the isomorphism End(G)∼= End(G36), where G is another group, implies the isomorphism
G∼= G36.

We need the following fact on endomorphisms of an arbitrary group G. Let x, x1, x2 ∈ I(G). In [11],
Theorems 2.1 and 3.1–3.3, the necessary and sufficient conditions were given for x, x1, x2 under which the
group G decomposes into the following semidirect products:

G = (G1×G2) hK = G1 h (G2 hK) = G2 h (G1 hK), (5.1)

where
Imx = K, Imx1 = G1 hK, Imx2 = G2 hK, (5.2)

Kerx = G1×G2, Kerx1 = G2, Kerx2 = G1. (5.3)

Denote these conditions C(x, x1, x2). Assume that G∗ is another group such that the endomorphism
semigroups of G and G∗ are isomorphic and x∗, x∗1, x∗2 correspond to x, x1, x2 in this isomorphism. Then
x∗, x∗1, x∗2 satisfy conditions C(x∗, x∗1, x∗2) in End(G∗) and the group G∗ decomposes similarly to (5.1)–(5.3).

Theorem 5.1. A finite group G is isomorphic to G36 if and only if there exist x, x1, x2 ∈ I(G) such that the
following properties hold:
10 x, x1, and x2 satisfy C(x, x1, x2);
20 K(x1)∼= K(x2)∼= End(D4);
30 K(x)∼= End(C2);
40 |{z ∈ K(x2) | xz = z, zx1 = 0}|= 4;
50 |{z ∈ K(x1) | xz = z, zx2 = 0}|= 2.

Proof. Necessity. Let G = G36. Denote by x, x1, and x2 the projections of G onto its subgroups 〈d〉, 〈a〉h〈d〉,
and (〈b〉×〈c〉)h 〈d〉, respectively. Then x, x1, x2 ∈ I(G). We shall prove that x, x1, and x2 satisfy properties
10–50.

By the definition, G decomposes into semidirect products (5.1), where

K = Imx, G1 = Kerx2 = 〈a〉, G2 = Kerx1 = 〈b〉×〈c〉,

Imx1 = G1 hK = 〈a〉h 〈d〉 ∼= D4,

Imx2 = G2 hK = (〈b〉×〈c〉)h 〈d〉,
Kerx = G1×G2 = 〈a〉×〈b〉×〈c〉.

Hence x, x1, and x2 satisfy property 10.
By Lemma 3.2,

K(x)∼= End(〈d〉)∼= End(C2), K(x1)∼= End(D4).
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Since (db)2 = c, (db)4 = 1, b−1 ·db ·b = (db)−1, we have

Imx2 = (〈b〉×〈c〉)h 〈d〉= 〈db〉h 〈b〉 ∼= D4,

and, by Lemma 3.2, K(x1)∼= End(D4). Therefore, properties 20 and 30 hold.
In view of Lemma 3.2, the set {z ∈ K(x2) | xz = z, zx1 = 0} consists of endomorphisms z such that

(Kerx2)z = 〈1〉, (Imx2)z⊂ Imx2,

(Imx2∩Kerx)z = 〈1〉, (Imx)z⊂ Kerx1∩ Imx2,

i.e., each such z is uniquely induced by a homomorphism

Imx = 〈d〉 z−→ Kerx1∩ Imx2 = 〈b〉×〈c〉 ∼= C2×C2.

The number of such homomorphisms is 4. Property 40 is proved.
Similarly to the previous case, the set {z ∈ K(x1) | xz = z, zx2 = 0} consists of endomorphisms z which

are induced by a homomorphism

Imx = 〈d〉 z−→ Kerx2∩ Imx1 = 〈a〉 ∼= C4.

The number of such homomorphisms is 2. Property 50 is proved. The necessity is proved.

Sufficiency. Let G be a finite group and let there exist x, x1, x2 ∈ I(G) which satisfy properties 10–50 of
the theorem. Our aim is to prove that G∼= G36.

By property 10, G splits into semidirect products (5.1), where equalities (5.2) and (5.3) hold. In view of
Lemma 3.2, properties 20 and 30 imply

End(Imx)∼= End(C2), End(Imx1)∼= End(Imx2)∼= End(D4).

Since each finite Abelian group and the group D4 are determined by their endomorphism semigroups in the
class of all groups ([7], Theorem 4.2 and [9], Corollary 3.7), we have

K = Imx = 〈d〉 ∼= C2, Imx1 ∼= Imx2 ∼= D4 (5.4)

for an element d ∈ G.
In view of (5.2) and (5.3),

Imx1 = G1 hK = (Kerx∩ Imx1)h Imx. (5.5)

Similarly to the proof of the necessity of property 50, each z ∈ K(x1) for which xz = z, zx2 = 0 satisfies the
conditions

(Kerx)z = 〈1〉, (Imx)z⊂ Kerx∩ Imx1, (5.6)

and is uniquely induced by a homomorphism Imx −→ Kerx ∩ Imx1. Since Imx = 〈d〉 ∼= C2 and, by
property 50, the number of such homomorphisms is two, the subgroup G1 = Kerx ∩ Imx1 of Imx1 is
cyclic ([14], Theorem 5.46). Therefore, Kerx∩ Imx1 = 〈a〉 for some a ∈ G. It follows from (5.4)–(5.6)
that

Imx1 = G1 hK = 〈a〉h 〈d〉 ∼= D4, d2 = a4 = 1, d−1ad = a−1. (5.7)

In view of (5.2) and (5.3),

Imx2 = G2 hK = (Kerx∩ Imx2)h Imx.
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Similarly to the previous case, each z ∈ K(x2) for which xz = z, zx1 = 0, is uniquely induced by a
homomorphism Imx−→ Kerx∩ Imx2. Since Imx = 〈d〉 ∼= C2 and Imx2 ∼= D4, property 40 implies that

G2 = Kerx∩ Imx2 ∼= C2×C2.

Therefore,
Imx2 = (〈b〉×〈c〉)h 〈d〉 ∼= D4

for some b, c∈Kerx∩ Imx2. By the properties of D4, b and c can be chosen so that dc = cd and d−1bd = bc.
Hence

Imx2 = 〈b, c, d | b2 = c2 = d2 = 1, bc = cb, cd = dc, d−1bd = bc〉. (5.8)

It follows from (5.1), (5.7), and (5.8) that

G = 〈a, b, c, d | a4 = b2 = c2 = d2 = 1, ab = ba, ac = ca, bc = cb, dc = cd, d−1ad = a−1, d−1bd = bc〉,

i.e., the groups G and G36 are isomorphic. The sufficiency is proved and the theorem is also proved.

Theorem 5.2. The group G36 is determined by its endomorphism semigroup in the class of all groups.

The proof of Theorem 5.2 is similar to the proof of Theorem 4.2.

6. GROUP G37

In this section, we shall characterize the group

G37 =〈a, b, c, d | a4 = b2 = c2 = d4 = 1, ab = ba, ac = ca,

bc = cb, dc = cd, d2 = a2, d−1ad = a−1, d−1bd = bc〉 (6.1)

by its endomorphism semigroup. We will prove that the isomorphism End(G) ∼= End(G37), where G is
another group, implies the isomorphism G∼= G37.

Elements a and d in (6.1) generate a subgroup isomorphic to Q:

Q = 〈a, d | a4 = 1, d2 = a2, d−1ad = a−1〉.

The group G37 splits into the following semidirect products:

G37 = (〈b〉×〈c〉)h 〈a, d〉= (〈b〉×〈c〉)hQ = 〈a, d, c〉h 〈b〉. (6.2)

Theorem 6.1. A finite group G is isomorphic to G37 if and only if Aut(G) is a 2-group and there exist
x, y ∈ I(G) such that the following properties hold:
10 K(x)∼= End(Q);
20 K(y)∼= End(C2);
30 yx = xy = 0;
40 if z ∈ End(G) and xz = yz = 0, then z = 0;
50 |J(x)∩H(y)|= 2;
60 |{z ∈ H(x) | zy = 0}|= 4;
70 |{z ∈ End(G) | xz = z, zx = x, zy = 0}|= 4;
80 |{z ∈ End(G) | zy = y, yz = z, zx = 0}|= 2.
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Proof. Necessity. Let G = G37 and G be given by (6.2). It was proved in [5] that |Aut(G)|= 27. Denote by
x and y the projections of G onto its subgroups Q = 〈a, d〉 and 〈b〉, respectively. Then x, y ∈ I(G) and

Imx = Q = 〈a, d〉, Kerx = 〈b〉×〈c〉, Imy = 〈b〉 ∼= C2, Kery = 〈d, a, c〉.

We shall prove that x and y satisfy properties 10–80.
By Lemma 3.2, properties 10 and 20 hold. Since Imx ⊂ Kery and Imy ⊂ Kerx, property 30 is true.

Property 40 also holds, because z ∈ End(G) and xz = yz = 0 imply az = bz = cz = dz = 0, i.e., z = 0.
In view of Lemmas 3.3 and 3.6, each z ∈ J(x)∩H(y) acts on the generators of G as follows:

az = dz = cz = 1, bz = ci; i ∈ Z2. (6.3)

The map z, given by (6.3), preserves the generating relations of G, and, therefore, induces an endomorphism
of G for each i ∈ Z2. Hence |J(x)∩H(y)|= 2 and property 50 holds.

By Lemma 3.6, each z ∈ H(x), where zy = 0, acts on the generators of G as follows:

az = ci, bz = cz = 1, dz = c j; i, j ∈ Z2. (6.4)

The map z, given by (6.4), preserves the generating relations of G, and, therefore, induces an endomorphism
of G for each i, j ∈ Z2. Hence |{z ∈ H(x) | zy = 0}|= 4 and property 60 holds.

An endomorphism z of G satisfies the equalities xz = z, zx = x, and zy = 0 if and only if Kerx ⊂
Kerz, Imz⊂ Kery, g−1 ·gz ∈ Kerx, g ∈ G, i.e.,

az = aci, bz = cz = 1, dz = dc j (6.5)

for some i, j ∈Z2. The map z, given by (6.5), preserves the generating relations of G, and, therefore, induces
an endomorphism of G for each i, j ∈ Z2. The number of such endomorphisms z is 4, i.e. property 70 holds.
The proof of property 80 is similar. The necessity is proved.

Sufficiency. Let G be a finite group such that Aut(G) is a 2-group and there exist x, y ∈ I(G) which
satisfy properties 10–80 of the theorem. Our aim is to prove that G∼= G37.

In view of Lemma 3.2, properties 10 and 20 imply

End(Imx)∼= End(Q), End(Imy)∼= End(C2).

Since each finite Abelian group and the quaternion group Q are determined by their endomorphism
semigroups in the class of all groups ([7], Theorem 4.2 and [8], Corollary 1), we have

Imx = 〈a, d | a4 = 1, a2 = d2, d−1ad = a−1〉 ∼= Q,

Imy = 〈b〉 ∼= C2

for some a, b, d ∈ G.
By Lemma 3.4 and property 30, G decomposes into semidirect products as follows:

G = (N h Imx)h Imy = (N h Imy)h Imx,

Kerx = N h Imy, Kery = N h Imx,

where
N = Kerx∩Kery.

Since Aut(G) is a 2-group, ĝ = 1 for each 2′-element g of G. Hence all 2′-elements of G belong into its
centre Z(G). Therefore, the group G splits into the direct product G = G2′ ×G2 of its Hall 2′-subgroup G2′
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and Sylow 2-subgroup G2. Denote by z the projection of G onto its subgroup G2′ . Clearly, zx = zy = 0, and,
by property 40, z = 0, i.e. G2′ = 〈1〉 and G is a 2-group.

In view of Lemmas 3.3 and 3.6, each z ∈ J(x) ∩ H(y) is uniquely induced by a homomorphism
Imy = 〈b〉 −→N. By property 50, the number of such homomorphisms is 2. Therefore, the subgroup N of G
has only one element of order 2. Hence N is cyclic or a generalized quaternion group ([14], Theorem 5.46).
Assume that N is a generalized quaternion group Qm for some m≥ 2. By Lemma 3.6, each z∈H(x), zy = 0,
is uniquely induced by a homomorphism Imx = Q−→ N. Since Q is a subgroup of Qm and |Aut(Q)|= 24,
the number of such homomorphisms is ≥ 24. This contradicts property 60. Hence N is cyclic, i.e.,

N = 〈c〉 ∼= C2n

for some c ∈ N and n≥ 1. Note that the element c2n−1
belongs into the centre Z(G) of G.

Let us consider the map
zi j = xui j : G x−→ Q = 〈a, d〉 ui j−→ G,

dui j = dci2n−1
, aui j = ac j2n−1

; i, j ∈ Z2.

It is easy to check that ui j preserves the generating relations of Q, and, therefore, it is a homomorphism.
Hence zi j ∈ End(G). The number of such endomorphisms is 4 and these endomorphisms satisfy equalities

xzi j = zi j, zi jx = x, zi jy = 0.

By property 70,
{z ∈ End(G) | xz = z, zx = x, zy = 0}= {zi j | i, j ∈ Z2}. (6.6)

Since
x(xĉ) = xĉ, (xĉ)x = x, (xĉ)y = 0,

it follows from (6.6) that xĉ = zi j for some i, j ∈ Z2 and we have

c−1dc = dci2n−1
, c−1ac = ac j2n−1

. (6.7)

Similarly to (6.7), looking for endomorphisms yĉ, yd̂, and yâ, property 80 implies that

c−1bc = bcs2n−1
, d−1bd = bct2n−1

, a−1ba = bcv2n−1
(6.8)

for some s, t, v ∈ Z2.
Denote

M = 〈a, b, d, c2n−1〉.
In view of (6.7) and (6.8), M is an invariant subgroup of G. Clearly,

G/M = 〈cM〉 ∼= C2n−1 ∼= 〈c2〉.

Define z = πw, where π : G −→ G/M is the natural homomorphism and w : G/M = 〈cM〉 −→ 〈c2〉,
(cM)w = c2. Then xz = yz = 0, and, by property 40, z = 0. Hence n = 1, c2 = 1 and (6.6)–(6.8) imply

cd = dc, ac = ca, bc = cb, d−1bd = bct , a−1ba = bcv

for some t, v ∈ Z2 (i = j = s = 0, because of c = c2n−1 ∈ Z(G)). If t = v = 0, then G = 〈c〉× 〈b〉× 〈a, d〉
and the projection z of G onto 〈c〉 satisfies equalities xz = yz = 0, which contradicts property 40. If
(t, v) = (1, 0), (t, v) = (0, 1) or (t, v) = (1, 1), then the group G is isomorphic to G37. The corresponding
isomorphisms are
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aϕ = a, dϕ = d, bϕ = b, cϕ = c,

aϕ = d, dϕ = a, bϕ = b, cϕ = c,

aϕ = da−1, dϕ = d, bϕ = b, cϕ = c,

respectively (on the left sides of the given equalities are the generators a, b, c, d of G and on the right sides
are the generators a, b, c, d of G37). We have proved that G∼= G37. The sufficiency is proved. The theorem
is proved.

Theorem 6.2. The group G37 is determined by its endomorphism semigroup in the class of all groups.

The proof of Theorem 6.2 is similar to the proof of Theorem 4.2.

7. GROUP G38

In this section, we shall characterize the group

G38 = 〈a, b, c, d | a4 = b2 = c2 = d2 = 1, ab = ba, ac = ca, bc = cb, dc = cd, d−1ad = ac, d−1bd = ba2〉
(7.1)

by its endomorphism semigroup. We will prove that the isomorphism End(G) ∼= End(G38), where G is
another group, implies the isomorphism G∼= G38.

Theorem 7.1. A finite group G is isomorphic to G38 if and only if Aut(G) is a 2-group and there exist
x, y ∈ I(G) such that the following properties hold:
10 K(x)∼= K(y)∼= End(C2);
20 yx = xy = 0;
30 if z ∈ I(G) and x, y ∈ K(z), then z = 1;
40 J(x)∩ J(y)∩ I(G) = {0};
50 |J(x)∩ J(y)|= 4;
60 |{z ∈ End(G) | xz = z, zx = zy = 0}|= 4;
70 |[x]|= 4 and if z ∈ [x], then z · (J(x)∩ J(y)) = {0};
80 |[y]|= 4 and if z ∈ [y], then z · (J(x)∩ J(y)) = {0};
90 |J(x)∩P(y)|= |J(y)∩P(x)|= 4;
100 (J(x)∩P(y)) · (J(x)∩ J(y)) = (J(y)∩P(x)) · (J(x)∩ J(y)) = {0};
110 [x] · (J(x)∩P(y)) = {0}, [y] · (J(x)∩P(y)) = {y};
120 [y] · (J(y)∩P(x)) = {0}, [x] · (J(y)∩P(x)) = {x};
130 {z ∈ Aut(G) | xzy = xz, yzx = yz}= /0.

Proof. Necessity. Let G = G38 and G be given by (7.1). It was proved in [5] that |Aut(G)|= 27, i.e., Aut(G)
is a 2-group. The group G splits into the following semidirect products:

G = (〈a〉×〈b〉×〈c〉)h 〈d〉= ((〈a〉×〈c〉)h 〈d〉)h 〈b〉.

Denote by x and y the projections of G onto its subgroups 〈d〉 and 〈b〉, respectively. Then x, y ∈ I(G) and

Imx = 〈d〉, Kerx = 〈a〉×〈b〉×〈c〉, Imy = 〈b〉, Kery = (〈a〉×〈c〉)h 〈d〉.

We shall prove that x and y satisfy properties 10–130.
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By Lemma 3.2 and the definition of x and y, properties 10 and 20 hold. By Lemma 3.2, each z ∈ I(G)
such that x, y ∈ K(z) is given on the generators of G as follows:

dz = d, bz = b, az = aic j, cz = akcl (7.2)

(i, k ∈ Z4; j, l ∈ Z2). Map (7.2) preserves the generating relations of G and induces an idempotent
endomorphism of G if and only if z = 1. Hence property 30 holds.

By Lemma 3.3, J(x)∩ J(y) consists of z ∈ End(G) such that

dz = bz = 1, az = aic j, cz = akcl; i, k ∈ Z4; j, l ∈ Z2. (7.3)

Map (7.3) preserves the generating relations of G if and only if k = l = 0 and i ≡ 0(mod2). Therefore,
|J(x)∩ J(y)|= 4 and property 50 is true. An endomorphism z given by (7.3) is an idempotent if and only if
i = j = k = l = 0, i.e., z = 0. Hence property 40 holds.

Assume that z ∈ End(G) and xz = z, zx = zy = 0. Then Kerx⊂ Kerz, Imz⊂ Kerx∩Kery, i.e.,

bz = az = cz = 1, dz = aic j; i ∈ Z4; j ∈ Z2. (7.4)

Map (7.4) preserves the generating relations of G if and only if i≡ 0(mod2). Therefore, the number of such
z is 4 and property 60 is true.

By Lemma 3.8, [x] consists of the maps w such that

bw = aw = cw = 1, dw = da1, (7.5)

where a1 ∈ Kerx = 〈a, b, c〉 and (da1)2 = 1. Easy calculations show that these conditions satisfy only
elements a1 = a2i0cm0 ; i0, m0 ∈ Z2. Hence |[x]|= 4. Choose w ∈ [x] and z ∈ J(x)∩ J(y) given by (7.5) and
(7.3), respectively. Then d(wz) = b(wz) = a(wz) = c(wz) = 1, i.e., wz = 0. Therefore, property 70 is true.
Similarly, property 80 holds.

By Lemmas 3.3 and 3.7, J(x)∩P(y) consists of the maps u such that

du = 1, bu = b, au = amcn, cu = asct ; m, s ∈ Z4; n, t ∈ Z2. (7.6)

Map (7.6) preserves the generating relations of G if and only if s = t = 0, m ≡ 0(mod2). Therefore,
|J(x)∩P(y)|= 4. Similarly, |J(y)∩P(x)|= 4. We have obtained property 90.

Choose u ∈ J(x)∩P(y) and z ∈ J(x)∩ J(y) given by (7.6) and (7.3), respectively. Then k = l = s =
t = 0, i≡m≡ 0(mod2), and d(uz) = b(uz) = a(uz) = c(uz) = 1, i.e., uz = 0. Hence (J(x)∩P(y)) · (J(x)∩
J(y)) = {0}. Similarly, (J(y)∩P(x)) · (J(x)∩ J(y)) = {0}. Therefore, property 100 is true.

To prove property 110, choose w ∈ [x] and u ∈ J(x)∩ P(y). Then w and u are given by (7.5) and
(7.6), respectively, where a1 = a2i0cm0 , s = t = 0, m ≡ 0(mod2). Calculating wu, we get wu = 0. Hence
[x] · (J(x)∩P(y)) = {0}. Similarly to [x], the set [y] consists of maps v such that

dv = av = cv = 1, bv = ba2, a2 = a2 j0ck0 ; j0, k0 ∈ Z2.

We have
d(vu) = a(vu) = c(vu) = 1, b(vu) = (ba2 j0ck0)u = b(amcn)2 j0 = b,

i.e., vu = y. Therefore, [y] ·(J(x)∩P(y)) = {y}. Property 110 is proved. The proof of property 120 is similar.
Finally, let us prove property 130. Choose z ∈ Aut(G) such that xzy = xz and yzx = yz. Since

d(xzy) = d(zy) = (dz)y and d(xz) = dz, we have (dz)y = dz, and, by Lemma 3.1, dz = b. Similarly, yzx = yz
implies bz = d. The equality ab = ba implies az ·bz = bz ·az and hence az ·d = d ·az. The centralizer of d in
G consists of elements dia2 jck, where i, j, k ∈ Z2. Therefore, az = dia2 jck and (az)2 = (dia2 jck)2 = 1. It is
impossible, because a and az are elements of order 4. This contradiction proves property 130. The necessity
is proved.
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Sufficiency. Let G be a finite group such that Aut(G) is a 2-group and there exist x, y ∈ I(G) which
satisfy properties 10–130 of the theorem. Our aim is to prove that G∼= G38.

In view of Lemma 3.2, property 10 implies

End(Imx)∼= End(Imy)∼= End(C2).

Since each finite Abelian group is determined by its endomorphism semigroups in the class of all groups,
we have

Imx = 〈d〉 ∼= C2, Imy = 〈b〉 ∼= C2

for some b, d ∈ G. By Lemma 3.4 and property 20, G decomposes into semidirect products as follows:

G = (N h Imx)h Imy = (N h Imy)h Imx, (7.7)

Kerx = N h Imy, Kery = N h Imx,

where
N = Kerx∩Kery.

Therefore,
G/N = 〈dN〉×〈bN〉 ∼= C2×C2, G ′ ⊂ N. (7.8)

Since Aut(G) is a 2-group, ĝ = 1 for each 2′-element g of G. Hence all 2′-elements of G belong
into its centre Z(G). Therefore, the group G splits into the direct product G = G2′ ×G2 of its Hall
2′-subgroup G2′ and Sylow 2-subgroup G2. Denote by z the projection of G onto its subgroup G2′ . Clearly,
z ∈ J(x)∩ J(y)∩ I(G), and, by property 40, z = 0, i.e. G2′ = 〈1〉 and G is a 2-group.

Each z ∈ End(G), where xz = z, zx = zy = 0, is product z = πu of the natural homomorphism
π : G−→G/〈N, b〉= 〈d〈N, b〉〉 ∼=C2 and a homomorphism u : G/〈N, b〉 −→N. By property 60, the number
of such homomorphisms u is 4. Hence N contains four elements g such that g2 = 1. Since N is a normal
subgroup of G, one of the elements of order 2 of N belongs to the centre of G. Therefore, N contains three
elements of order 2 and they commute with each other. Denote these elements of order 2 by c1, c2, and c3.
Clearly, c1c2 = c3, c1c3 = c2, c2c3 = c1.

By property 50, we can choose non-zero z ∈ J(x)∩J(y). Then d, b ∈Kerz 6= G and G = N ·Kerz. There
exists a normal subgroup M of G such that Kerz ⊂M and G/M ∼= C2, i.e., G = N ·M and G ′ ⊂M. On the
other hand, G ′ ⊂ N. If G ′ = N, then N ⊂M and G = N ·M = M, which contradicts G/M ∼= C2. Hence G ′
is a proper subgroup of N and, in view of (7.7) and (7.8), the factor-group G/G ′ splits into a direct product

G/G ′ = 〈d1G ′〉× . . .×〈dkG ′〉×〈dG ′〉×〈bG ′〉,
where d1, . . . , dk ∈ N \G ′, k ≥ 1, and 〈dG ′〉 ∼= 〈bG ′〉 ∼= C2. Define zi jl ∈ End(G) as follows:

zi jl = ππiτi : G π−→ G/G ′ πi−→ 〈diG ′〉 τi−→ 〈c l
j〉,

where π is the natural homomorphism, πi is the projection of G/G ′ onto 〈diG ′〉, (diG ′)τi = c l
j, and

1 ≤ i ≤ k, l ∈ Z2, j = 1, 2, 3. By the definition, zi jl ∈ J(x)∩ J(y). For a fixed i, the number of such
endomorphisms zi jl of G is 4. Property 50 implies that k = 1 and

J(x)∩ J(y) = {z111, z121, z131, 0}. (7.9)

Hence
G/G ′ = 〈aG ′〉×〈dG ′〉×〈bG ′〉, G ′ ⊂ N = Kerx∩Kery (7.10)

(a = d1). Note that N/G ′ = 〈aG ′〉 ∼= C2, because otherwise J(x)∩J(y) contains an element z different from
0, z111, z121, z131: z = ππiτ , where

〈aG ′〉= 〈d1G ′〉 τ−→ 〈am/4〉, (d1G ′)τ = am/4
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and m is the order of a. If a2 = 1, then G = 〈G ′, d, b〉h 〈a〉 and the projection u of G onto 〈a〉 belongs to
J(x)∩ J(y)∩ I(G), which contradicts property 40. Therefore, a2 6= 1 and the elements c1, c2, c3 of order 2
of N belong to G ′. Note that

bd 6= db, (7.11)

because otherwise G = N h (〈b〉 × 〈d〉), and the projection z of G onto 〈b〉 × 〈d〉 satisfies conditions
z ∈ I(G), z 6= 1; x, y ∈ K(z), which contradicts property 30.

The derived subgroup G ′ of G does not contain any subgroup M of G such that K = 〈d, b, M〉 is a
normal subgroup of G and K 6= 〈d, b, G ′〉. To prove this, assume that there exist a subgroup M of G such
that K = 〈d, b, M〉 is a normal subgroup of G and K 6= 〈d, b, G ′〉. Then there exists a normal subgroup L
of G such that K ⊂ L and G/L ∼= C4 or G/L ∼= C2×C2. Consider the endomorphism z = πu of G, where
π : G −→ G/L is the natural homomorphism and u is an isomorphism G/L −→ 〈am〉 (if G/L ∼= C4) or an
isomorphism G/L−→ 〈c1〉×〈c2〉 (if G/L∼= C2×C2) and am is a power of a with order 4. By the definition
of z, we have z ∈ J(x)∩ J(y) and z 6∈ {z111, z121, z131, 0}. This contradicts (7.9).

Since Imx = 〈d〉 ∼= C2 and the set [x] consists of z ∈ I(G) such that Kerx = Kerz, we have Imz = 〈dc〉 ∼=
C2, where c∈Kerx, and |[x]| is equal to the number of elements dc, c∈Kerx, of order 2. By property 70, the
number of such elements is 4 and c ∈ G ′. Similarly, by property 80, |[y]| is equal to the number of elements
bc, c ∈ G ′ and the number of such elements is 4. Denote

D = {c ∈ G ′ | (dc)2 = 1}, B = {c ∈ G ′ | (bc)2 = 1}.

Then 1 ∈ D, 1 ∈ B, and
|D|= |B|= 4. (7.12)

Choose c ∈ D. Then d−1cd = c−1, i.e., (dci)2 = 1, ci ∈ D for each integer i, and, by (7.12), c4 = 1. If c
is an element of order 4, then D is a cyclic subgroup of G ′: D = 〈c〉 ∼= C4. If D does not contain any element
of order 4, then (7.12) implies that D = {1, c1, c2, c3}, i.e., D is also a subgroup of G ′: D = 〈c1〉× 〈c2〉 ∼=
C2×C2. Let us prove that D and 〈d, D〉 are normal subgroups of G. Assume that c ∈ D, g ∈ G. Since
g−1dg = d · [d, g] is an element of order 2 and [d, g] ∈ G ′, we have g−1dg = dc̃, c̃ = [d, g] ∈ D. Similarly,
g−1dcg = g−1dg ·g−1cg = dc̃ ·g−1cg is an element of order 2, i.e., c̃ ·g−1cg ∈ D and g−1cg ∈ D. We have
proved that g−1dg ∈ 〈d, D〉 and g−1cg ∈ D. Hence D and 〈d, D〉= Dh 〈d〉 are the normal subgroups of G.
Similarly, we can prove that B ∼= C4 or B = 〈c1〉× 〈c2〉 ∼= C2×C2 and D and 〈b, B〉 = B h 〈b〉 are normal
subgroups of G. Therefore, DB and 〈d, b, DB〉 are also normal subgroups of G and 〈d, b, DB〉 ⊂ 〈d, b, G ′〉.
It was proved above that in this case 〈d, b, DB〉= 〈d, b, G ′〉, i.e.,

G ′ = DB.

Let us prove now that
G ′ = D = B∼= C2×C2.

To do this, we consider the sets J(x)∩P(y) and J(y)∩P(x). By Lemmas 3.3, 3.8, and property 100, the set
J(x)∩P(y) consists of endomorphisms z of G such that

dz = 1, bz = b, az ∈ G ′, G ′z⊂ G ′.

Property 110 implies that Dz = Bz = G ′z = {1} and G ′ ⊂ Kerz for such z. Since G/G ′ ∼= C2×C2×C2, we
have Imz∼= C2×C2 or Imz∼= C2, and, by property 90, G ′ has three elements of order 2 and these elements
commute with b. Similarly, by properties 100, 110, and 90, d commutes with each element of order 2 from
G ′. It follows from the first parts of properties 70 and 80 that D = B = G ′ ∼= C2×C2. Since a2 6= 1 and
a2 ∈ G ′, we have a4 = 1, i.e., a is an element of order 4. Note that a commutes with each element of G ′.
Indeed, 〈a, G ′〉 is a group of order 8. It cannot be the quaternion group, because the quaternion group has
only one element of order 2. It cannot be the dihedral group either, because the dihedral of order 8 has five
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elements of order 2. Therefore, the group 〈a, G ′〉 is Abelian and a commutes with each element from G ′. It
also follows that G ′ is contained in the centre of G and G = 〈d, b, a〉.

Denote
[a, d] = a1, [b, d] = a2, [a, b] = a3,

i.e.,
d−1ad = aa1, d−1bd = ba2, b−1ab = aa3.

Clearly, G ′ = 〈a1, a2, a3〉 and, by (7.11), a2 6= 1. Let us prove that G∼= G38. To do this, we will separate the
following three possible cases: (a) a1 = a3; (b) a1 6= a3 and a1 6= 1, a3 6= 1; (c) a1 6= a3 and a1 = 1 or a3 = 1.

Assume that a1 = a3. Then the map z, given by

dz = b, bz = d, az = a, cz = c, c ∈ G ′,

can be extended to an automorphism of G. The automorphism z satisfies equalities xzy = xz, yzx = yz, which
contradicts property 130. Hence the case a1 = a3 is impossible.

Assume that a1 6= a3 and a1 6= 1, a3 6= 1. Since G ′ ∼= C2×C2, we have a2 = a1a3, a1 = a2a3, a3 = a1a2.
Then the map z, given by

dz = b, bz = d, az = a, a1z = a3, a3z = a1, a2z = a2,

can be extended to an automorphism of G. The automorphism z satisfies equalities xzy = xz, yzx = yz, which
contradicts property 130. Hence this case is also impossible.

Assume that a1 6= a3 and a1 = 1. Then G ′ = 〈a2〉×〈a3〉 and

ad = da, d−1bd = ba2, b−1ab = aa3.

There are three possible cases: a2 = a3 or a2 = a2 or a2 = a2a3. If a2 = a3, then G = 〈d, a2〉h 〈b, a〉 and the
projection z of G onto the subgroup 〈b, a〉 satisfies the conditions z ∈ J(x)∩P(y) and z · (J(x)∩J(y)) 6= {0},
which contradicts property 100. If a2 = a2, then G is isomorphic to G38. Assume that a2 = a2a3. Then

dba ·dba = d−1bd ·aba = ba2 ·aba = a2 ·b−1ab ·a
= a2 ·aa3 ·a = a2 ·a2a3 = a2 ·a2 = 1

and, therefore, G = Kerx h 〈dba〉. Denote by z the projection of G onto 〈dba〉. Then z ∈ [x] and
z · (J(x)∩ J(y)) 6= {0}, which contradicts property 70. Hence the case a2 = a2a3 is impossible.

Assume that a1 6= a3 and a3 = 1. Then G ′ = 〈a1〉×〈a2〉 and

ab = ba, d−1bd = ba2, d−1ad = aa1.

There are three possible cases: a2 = a1 or a2 = a2 or a2 = a1a2. If a2 = a1, then G = 〈b, a2〉h 〈d, a〉 and the
projection z of G onto the subgroup 〈d, a〉 satisfies the conditions z ∈ J(y)∩P(x) and z · (J(x)∩J(y)) 6= {0},
which contradicts property 100. If a2 = a2, then G is isomorphic to G38. Assume that a2 = a1a2. Then

dba ·dba = d−1bd ·d−1ad ·ba = ba2 ·aa1 ·ba
= b2a2a1a2 = a2a2 = 1

and, therefore, G = Kerx h 〈dba〉. Denote by z the projection of G onto 〈dba〉. Then z ∈ [x] and
z · (J(x)∩ J(y)) 6= {0}, which contradicts property 70. Hence the case a2 = a2a3 is impossible.

We have proved that G∼= G38. The sufficiency is proved. The theorem is proved.

Theorem 7.2. The group G38 is determined by its endomorphism semigroup in the class of all groups.

The proof of Theorem 7.2 is similar to that of Theorem 4.2.
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Maksimaalset alamrühma C4×C2×C2 omavate 32. järku rühmade endomorfismidest

Piret Puusemp ja Peeter Puusemp

On tõestatud, et kõik 32. järku rühmad, mille üheks maksimaalseks alamrühmaks on C4 ×C2 ×C2, on
määratud oma endomorfismipoolrühmadega kõigi rühmade klassis. Ühtlasi on antud mainitud rühmade
kirjeldused nende endomorfismipoolrühmade kaudu.


