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Abstract. The propagation and reflection of the ultrasonic tone burst in the strongly inhomogeneous exponentially graded material
are studied. Deformations of a specimen with two parallel boundaries are described by the five constant nonlinear theory of
elasticity. The one-dimensional problem is considered. The influence of the variation in material properties on the profile of
boundary oscillations is clarified by parametric plots. The obtained results may be useful in the ultrasonic nondestructive material
characterization.
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1. INTRODUCTION

Composites with continuously varying volume fractions
of their constituents are known as functionally graded
materials (FGMs) [1–4]. Most of the research in the
area of designing new FGMs involves the development
of graded coatings and interfacial regions for the purpose
of improving the resistance of material to the different
external effects (extreme temperature, intensive wastage,
etc.) [5–7].

The main goal of this work is to study the possibility
of characterizing FGMs with strongly variable properties
close to their boundaries on the basis of the recorded
data about the propagation and reflection of ultrasonic
harmonic bursts in the material. A physically nonlinear
inhomogeneous FGM specimen with two parallel
boundaries is considered. The material’s properties vary
only in the thickness direction. Intensive variation of
these properties close to the boundaries has an ex-
ponential functionality.

The ultrasonic tone burst (harmonic wave with
the finite length) is excited on one of the boundaries
of the specimen in terms of stress and the evoked
boundary oscillations are recorded on both boundaries
in terms of displacement or particles velocity. The one-
dimensional wave propagation is described on the basis
of the nonlinear theory of elasticity [8]. The governing

equation of motion is solved numerically using the
symbolic manipulation software Maple.

Analyses of the results of numerical simulations led
to the conclusion that the variation of material properties
was reverberated in boundary oscillation profiles. This
phenomenon is studied using the parametric plots
composed on the basis of different profiles of boundary
oscillations.

The properties of the nonlinear elastic FGMs are
defined by the density and by combinations of the
second- and the third-order elastic coefficients. It was
shown that changes of boundary oscillation profiles
caused by the variable density and the linear elasticity
were of the same order while changes caused by the
nonlinear elasticity were small phenomena of higher
order. The influence of the sign and the symmetric and
asymmetric exponential variation of material properties
on the modulation of boundary oscillations was studied
in detail.

Comparisons between the composed parametric
plots enable one to determine the sign of material
properties variation and to distinguish materials with
(i) homogeneous properties, (ii) symmetrically dis-
tributed properties, (iii) asymmetrically distributed
properties, and also to distinguish the most relevant
property of the material responsible for inhomogeneity.
These results may be used as the basic principles of the
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method for qualitative nondestructive characterization of
FGMs with essentially changing continuous properties.

2. EXPONENTIALLY GRADED MATERIALS

Functionally graded materials (FGMs) produced mostly
by powder-based processes [2,4] give designers full
flexibility to propose different effective material gradings
for optimized performance.

In this paper the specimens of FGMs with strongly
changing properties close to the boundaries are studied.
Such materials may be employed in many important
areas such as coatings and interfacial regions for the
purpose of reducing residual and thermal stresses and
increasing bounding strength.

The purpose is to clarify the influence of the varia-
tion of the properties of the exponentially graded FGMs
on the propagation and reflection of ultrasonic harmonic
bursts in the material. A specimen of an FGM with
two parallel boundaries is considered. Deformations
of the specimen with continuously variable properties
are described by the five-constant nonlinear theory of
elasticity [8] in Lagrangian rectangular coordinates X .
Material properties vary only in the thickness direction
of the specimen. The variable material properties are
the density ρ(X), the second-order elastic (Lamé)
coefficients λ (X), µ(X), and the third-order elastic
coefficients ν1(X), ν2(X), and ν3(X). One-dimensional
problem is examined. In this case elastic properties
of the physically nonlinear material are defined by the
elastic coefficients that are grouped to the linear elastic
coefficient α(X) and to the nonlinear elastic coefficient
β (X) [9]:

α(X) = λ (X)+2 µ(X),
β (X) = 2 [ν1(X)+ν2(X)+ν3(X)]. (1)

Exponential variation of material properties close to the
boundaries of the specimen of the exponentially graded
FGM is described by the expression

γ(X) = γ0 [1+ γ11 exp(−γ12X)+ γ21 exp(−γ22(X−h))] ,
γ(X) = ρ(X),α(X),β (X), (2)

where h is the thickness of the specimen, γ0 denotes
the main constant part of the material properties, and
constants γi j(X), i, j = 1,2, characterize the variation of
these properties.

The one-dimensional motion of the physically
nonlinear elastic FGM is governed by the equation of
motion [9], which is solved here in the form of a set of
three equations

f (X , t) = V,X (X , t),
g(X , t) = V,t(X , t),
[1+ k1(X) f (X , t)] f,X (X , t) + k2(X) f (X , t)

+ k3(X) f (X , t)2 = k4(X)g,t(X , t), (3)

where V denotes the displacement, t the time, and the
indices after the comma indicate differentiation with
respect to coordinate X or time t. The solution to the
set of equations (3) determines directly the function V
and its derivatives V,X and V,t . The coefficients of the set
of equations (3)

k1(X) = 3 [1+ k0(X)β (X)] ,
k2(X) = k0(X)α,X (X),

k3(X) =
3
2

k0(X) [α,X (X)+β,X (X)] ,

k4(X) = ρ(X)k0(X) (4)

are functions of the variable in space material properties.
Here k0(X) = [α(X)]−1.

3. TONE BURST PROPAGATION

The properties of FGMs are functions of space
coordinates and therefore wave propagation problems
related to FGMs are generally difficult to analyse without
resorting to some numerical approaches. The analytical
solution to the set of equations (3) that governs the
motion of FGMs is unknown. Some authors derived
analytical solutions to the linear governing equations
for special cases of material inhomogeneity (see review
in [10]).

The problem of wave propagation in FGMs with
arbitrary smooth changes of material properties is
solved mainly by approximating the smooth changes of
material properties by piling up many homogeneous [11]
or inhomogeneous [12] thin layers. An alternative
approach is the combination of analytical and numerical
approaches, which is used below. The problem is
formulated analytically and the governing equations (3)
are solved numerically by the finite difference method
making use of the symbolic manipulation software
Maple.

The tone burst is excited on the boundary of the
specimen by the initial conditions

V (X ,0) = V,t(X ,0) = 0, (5)

and by the boundary conditions

V,X (0, t) =−ε sin(ωt) [H(t)−H(t− t0)] ,
V,X (h, t) = 0. (6)

Here ε is a constant, ω denotes the frequency, and H(t)
is Heaviside’s unit step function.

The solution to the set of equations (3) under the
initial and boundary conditions (5) and (6) describes the
propagation of the tone burst in the sample of FGM
with one free boundary (see Fig. 1). The problem is
solved numerically. Properties of FGMs are determined
resorting to Eq. (2) by the value of the main constant part
(γ0) of the density ρ0 = 6000 kg/m3. The values for the
Lamé constants and the third-order elastic constants are
approximated on the basis of the experimental data [13];
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Fig. 1. Tone burst propagation in homogeneous material.

as a result the linear elastic constant is α0 = 400 GPa and
the nonlinear elastic constant β0 =−1000 GPa. Here the
relations [14] between the Murnaghan constants [13] and
the third-order elastic constants νi, i = 1,2,3 introduced
by Bland [8] are taken into account. Variation of material
properties is studied on the basis of Eq. (2) by the values
of constants γi1 = ±0.5, γi2 = 150 m−1, i = 1,2. The
thickness of the specimen with two parallel boundaries is
h = 0.1 m. The strain that is evoked on the boundaries by
excitation is characterized by the dimensionless constant
ε = 1× 10−4. The frequency ω is determined from the
condition that the length of two periods of waves is equal
to the thickness h of the homogeneous sample with the
properties determined by ρ0,α0, and β0. The length
of the excited burst t0 is taken equal to one period of
harmonic oscillations.

The following different cases of material inhomo-
geneity are considered. Case A is a symmetric case

with material properties that are changing strongly and
exponentially close to both boundaries. Cases B and C
are asymmetric cases with the exponential change of
material properties close to one of the boundaries, where
X = 0 or X = h, respectively. In all the cases the
positive (γi1 = +0.5) and the negative (γi1 = −0.5)
change of material properties to the half of their basic
value close to the boundaries is studied. The notation
of the cases is regulated to A+, B+, C+ and A–, B–, C–
(Fig. 2), respectively. It is necessary to pay attention to
the dissimilar variation of the nonlinear part of elasticity
β (X) in all the cases due to its initial negative value.

The tone burst is excited on the boundary of the
specimen in terms of V,X (see boundary conditions (6)),
and the evoked oscillations may be recorded on both
boundaries of the specimen in terms of particle displace-
ment V or its derivative V,t . Boundary oscillations in
terms of V,X are defined by the boundary conditions (6).
The program package Maple enables to determine the
oscillation field on the whole X − t plane (see Fig. 1).
From the practical point of view it is easier to study
oscillations evoked by the excited burst on the boundaries
of the specimen (Fig. 3) or in some cross-section of it.

The influence of nonlinear effects on the burst
propagation in the physically homogeneous FGM is
characterized by the difference of the absolute values of
the amplitude V of the boundary oscillations evoked by
the nonlinear propagation of the burst in the physically
nonlinear homogeneous material and the amplitude U
evoked by the linear propagation of the burst in the
physically linear homogeneous material (Fig. 4). The
parametric plots with respect to time (Fig. 5) illustrate
these effects more expressively.

Fig. 2. Cases of material inhomogeneity.
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Fig. 3. Oscillations on boundaries of homogeneous material.

Fig. 4. Nonlinear part of oscillations on the boundaries of homogeneous material: (a) X = 0, (b) X = h.

Fig. 5. Characterization of the nonlinear part of oscillations on the boundaries of homogeneous material by parametric plots:
(a) X = 0, (b) X = h.
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4. MATERIAL PROPERTIES VERSUS
BOUNDARY OSCILLATIONS

The considered FGM has quadratic nonlinear elastic
properties. The one-dimensional problem defines the
properties of this FGM by the density ρ(X), the linear
elastic coefficient α(X), and the nonlinear elastic coeffi-
cient β (X) [9]. The elastic coefficients α(X) and β (X)
are determined on the basis of the elastic coefficients of
the well-known five-constant theory of elasticity [8] by
Eq. (1).

The influence of the exponential variation of material
properties ρ(X), α(X), and β (X) on the boundary
oscillation profiles is studied numerically. The variation
of these properties corresponds to the six cases (Fig. 2).
Numerical values of material properties and the excited
burst are described above. Here, in all cases the dis-
placements evoked on the boundaries of the physically
nonlinear inhomogeneous material by the nonlinear
propagation and reflection of the burst V are compared
with the displacements U evoked on the boundaries
of the physically linear homogeneous material by the
linear propagation and reflection of the burst. From the
practical point of view it is relatively easy to find the
analytical expression for the displacement U as a solution
to the linear hyperbolic second-order partial differential
equation with constant coefficients [15].

The results of numerical simulations confirm the fact
that the variation of material properties is reverberated
in boundary oscillation profiles. The relative distortion
of oscillations on the boundary X = 0 of the specimen
with the symmetric exponential variation of all material
properties (case A) is plotted in Fig. 6. It is essential
that the profiles of boundary oscillations caused by the
variation of material properties according to the cases A+
and A– can be easily distinguished, i.e., these oscillations
are sensitive to the sign of the variation of material
properties. The dependence of boundary oscillations on
the scheme of the variation of material properties is
studied here in greater detail resorting to the parametric
plots composed on the basis of different profiles of
boundary oscillations.

The parametric plots in Fig. 7 illustrate the relative
distortion of oscillations on the boundary X = 0 versus
oscillations evoked by the linear propagation of the burst
in the physically linear homogeneous material on the
same boundary. The distortions in Fig. 7 are caused
by the summary impact of the nonlinearity and the
material inhomogeneity on oscillations in the physically
nonlinear inhomogeneous material. The parametric plots
in Fig. 5 illustrate the influence of the nonlinearity
on boundary oscillations in the homogeneous linear
material. Comparison of the plots in Fig. 5 and Fig. 7
enables easy determination of the presence of inhomo-
geneity in material properties and it verifies the fact that
distortions caused by nonlinearity manifest themselves
in higher order small phenomena that are measurable in
practice [16].

Analysis of the plots in Fig. 7 leads to the conclusion
that parametric plots are sensitive to the variation of
material properties. Simultaneous variation of material
properties transfigures the plots according to the case and
the sign of the variation of material properties. Plots for
the cases A, B, and C are qualitatively different. Cases A
and B are identified by the smaller loop compared to the
plots for the case C. The inclination of this loop from the
vertical direction is dependent on the sign of the variation
of material properties. In all cases plots that correspond
to the negative sign of γi1, i = 1,2 in the expression for
material properties (2) are more compact in comparison
with the other plots. The conclusion is that the parametric
plots presented in Fig. 7 enable to distinguish the cases
of the variation of material properties.

With the view to clarify the most relevant property of
the material responsible for inhomogeneity, the variation
of only one material property is considered at constant
values of two others. Parametric plots in Figs 8–10
illustrate the situation when only one of the material
properties ρ(X), α(X), or β (X) is changing severally
according to case A (Fig. 8), case B (Fig. 9), and
case C (Fig. 10), respectively. In all cases influences
of the variable density ρ(X) and the linear part of
elasticity α(X) on the burst propagation are effects of the
same order whereas the variation of the nonlinear part
of elasticity β (X) induces higher-order small but very
informative disturbances to the burst propagation.

Fig. 6. Influence of simultaneous variation of all material properties on oscillations on the boundary X = 0: (a) case A+, (b) case A–.
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Fig. 7. Characterization of simultaneous variation of all material properties by parametric plots on the boundary X = 0: (a) cases
A+ and A–, (b) cases B+ and B–, (c) cases C+ and C–; U∗ = U(0, t) ·106, m, V ∗ = [|V (0, t) | − |U(0, t) |] ·106, m.

Fig. 8. Influence of variable density and elasticity on oscillations on the boundary X = 0 in the cases A+ and A– (U∗ =U(0, t) ·106,
m, V ∗ = [|V (0, t) | − |U(0, t) |] ·106, m).
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Fig. 9. Influence of variable density and elasticity on oscillations on the boundary X = 0 in the cases B+ and B– (U∗ =U(0, t) ·106,
m, V ∗ = [|V (0, t) | − |U(0, t) |] ·106, m).

Fig. 10. Influence of variable density and elasticity on oscillations on the boundary X = 0 in the cases C+ and C– (U∗ =U(0, t) ·106,
m, V ∗ = [|V (0, t) | − |U(0, t) |] ·106, m).

The plots that characterize the variation of the
density and the linear part of elasticity are qualitatively
different for different cases of material inhomogeneity.
Also here, the variation of the density and of the linear
part of elasticity in cases A and B is characterized by

the smaller loop that does not characterize the corres-
ponding plots in case C. Comparison of plots enables
to distinguish the influence of variable density and the
variable linear part of elasticity on the burst propagation.
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Parametric plots that depict the influence of the
variation of the nonlinear part of elasticity are easily
distinguishable from other plots. The essential fact is that
the shape of these plots is sensitive to the case of the
variation of material properties, i.e., it supplies additional
information about the material properties for the problem
of nondestructive material characterization.

Consequently, parametric plots are an effective
source of information about the influence of the variation
of material properties on the burst propagation in
strongly inhomogeneous materials. Analysis of these
plots makes it possible to distinguish specimens made
of (i) a homogeneous material, (ii) a material with
symmetrically distributed properties, (iii) a material with
asymmetrically distributed properties, and to determine
the most relevant property of the material responsible for
the inhomogeneity.

5. CONCLUSIONS

Oscillations evoked on the boundaries of the specimen
with two parallel boundaries by the propagation and
reflection of the tone burst were found to be a powerful
source of information about the inhomogeneous
properties of the material of the specimen. The matter
was studied on the basis of parametric plots with respect
to time in a considerably inhomogeneous exponentially
graded material. The influence of the symmetrically and
asymmetrically distributed material properties on the
boundary oscillation was investigated in six different
cases of material inhomogeneity. It was shown that
distortions of boundary oscillations caused by variable
material density and linear elasticity were of the same
order while changes caused by nonlinear elasticity
manifested themselves in higher-order small but very
informative phenomena.

The changes in material properties are reflected
in composed parametric plots. The shapes of the
plots are sensitive to the kind of the inhomogeneous
material property and to the scheme of change of the
material property and they contain information that is
sufficient to qualitatively solve nondestructive material
characterization problems for an exponentially graded
material.
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Harmooniliste impulsside levi kirjeldamine eksponentsiaalselt skaleeritud materjalides
parameetriliste joonistega

Arvi Ravasoo

On uuritud ultrahelisagedusega harmooniliste impulsside levi ja peegeldumist tugevalt muutuvate omadustega
eksponentsiaalselt skaleeritud materjalides. Materjali deformeeruvust on kirjeldatud viiekonstantse mittelineaarse
elastsusteooria abil. Ühemõõtmelises käsitluses on selgitatud materjali omaduste mõju katsekeha kahel paralleelsel
äärepinnal häiritatud võnkumiste profiilidele, kasutades parameetrilisi jooniseid. Saadud tulemused on kasutatavad
vaadeldud materjalide mittepurustaval katsetusel.


