
Proceedings of the Estonian Academy of Sciences,
2013, 62, 1, 59–70

doi: 10.3176/proc.2013.1.07
Available online at www.eap.ee/proceedings

Bounded saturation-based CTL model checking

András Vörösa∗ , Dániel Darvasa, and Tamás Barthab

a Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar tudósok
körútja 2., H-1117 Budapest, Hungary

b Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u. 13–17., H-1111 Budapest, Hungary

Received 31 August 2011, revised 10 April 2012, accepted 1 November 2012, available online 20 February 2013

Abstract. Formal verification is becoming a fundamental step of safety-critical and model-based software development. As part of
the verification process, model checking is one of the current advanced techniques to analyse the behaviour of a system. Symbolic
model checking is an efficient approach to handling even complex models with huge state spaces. Saturation is a symbolic algorithm
with a special iteration strategy, which is efficient for asynchronous models. Recent advances have resulted in many new kinds of
saturation-based algorithms for state space generation and bounded state space generation and also for structural model checking.
In this paper, we examine how the combination of two advanced model checking algorithms – bounded saturation and saturation-
based structural model checking – can be used to verify systems. Our work is the first attempt to combine these approaches, and
this way we are able to handle and examine complex or even infinite state systems. Our measurements show that we can exploit the
efficiency of saturation in bounded model checking.

Key words: bounded model checking, saturation, Multiple-valued Decision Diagram, temporal logic, Computation Tree Logic.

1. INTRODUCTION

Formal methods are becoming widely used for the
verification of safety-critical and embedded systems.
The main advantage of formal methods is that (when
applicable) they can either provide a proof for the correct
behaviour of the system, or they can prove that the
system does not comply with its specification.

One of the most prevalent techniques in the field of
formal verification is model checking [9], an automated
technique to check whether a system fulfils its specifica-
tion. Model checking needs a representation of the state
space in order to perform analysis. Generating and stor-
ing the state space representation can be difficult in cases
when the state space is very large. There are two main
problems that cause the state space to explode:
• the asynchronous characteristic of distributed systems.

The composite state space of asynchronous sub-
systems is often the Cartesian product of the local
components’ state spaces,

• independently updated state variables lead to exponen-
tial growth in the number of the system states and state
transitions due to the overlapping actions.

Symbolic methods [10] are advanced techniques to
handle state space explosion. Instead of storing states
explicitly, symbolic techniques rely on an encoded re-
presentation of the state space such as decision diagrams.
These are compact graph forms of discrete functions.

Saturation [5] is considered as one of the most
effective state space exploration algorithms, which
combines the efficiency of symbolic methods with a
special iteration strategy. Nevertheless, there are still
many cases in which the state space of complex models
is either too large to store even symbolically, or the state
space is infinite. Bounded model checking is an advanced
technique to handle these problems, as it explores and
examines the properties on a bounded part of the state
space.

Bounded saturation-based state space exploration
was presented in [20], where the authors introduced a
new saturation algorithm, which explores the state space
only to some bounded depth. In this paper we extend
their approach to bounded Computation Tree Logic
(CTL) model checking. Our algorithm incrementally
explores the state space and employs structural model
checking on it. To our best knowledge, this is the

∗Corresponding author, vori@mit.bme.hu



60 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 59–70

first attempt to combine saturation-based CTL model
checking and bounded saturation-based state space
exploration. Our work is a first step towards efficient
bounded CTL model checking with many directions to
be explored in the future.

The structure of our paper is as follows: in
Section 2 we introduce the background of our work. In
Section 3 the implemented bounded saturation algorithm
is described with our improvements. Section 4 describes
the operation of our bounded CTL model checking
algorithm and its details. We present our measurements
in Section 5. Finally, we summarize the related work and
give our conclusions and directions for future work.

2. BACKGROUND

In this section we outline the background of our work.
First, we present Petri nets, the modelling formalism we
used. Then we describe decision diagrams, in particular
the Multiple-valued Decision Diagrams and Edge-valued
Decision Diagrams. These are the underlying data
structures of our algorithms; they store the state space
during model checking. Finally, we present the satura-
tion-based state space exploration algorithm, the model
checking background, and the use of saturation for
bounded state space exploration.

2.1. Petri nets

Petri nets are graphical models for concurrent and
asynchronous systems, providing both structural and
dynamical analysis. A (marked) discrete ordinary Petri
net is a PN = (P,T,E,w,M0), represented graphically
by a digraph. P = {p1, p2, . . . , pn} is a finite set
of places, T = {t1, t2, . . . , tm} is a finite set of transi-
tions, E ⊆ (P×T )∪ (T ×P) is the finite set of edges,
w : E → Z+ is the weight function assigning weights
w(pi, t j) to the edges between pi and t j. M : P → N
is a marking, represented by M(pi) tokens in place pi
for every i, and M0 is the initial marking of the net.
A t transition is enabled if for every incoming arc of
t : M(pi)≥ w(pi, t).

An event in the system is the firing of an enabled
transition ti, which decreases the number of tokens in
the incoming places p j with w(p j, ti) and increases the
number of tokens in the output places pk with w(ti, pk).
The firing of transitions is non-deterministic. The state
space of a Petri net is the set of states reachable through
transition firings.

Figure 1a depicts a simple example Petri net model
of a producer–consumer system. The producer creates
items and places them in the buffer, from where the
consumer consumes them. For synchronizing purposes
the buffer’s capacity is one, so the producer has to wait
till the consumer takes away the item from the buffer.
This Petri net model has a finite state space (also known
as reachability graph) containing eight states.

2.2. Decision diagrams

A Multiple-valued Decision Diagram (MDD) is a
directed acyclic graph, representing a function f con-
sisting of K variables: f : {0,1, . . .}K → {0,1}. An
MDD has a node set containing two types of nodes: non-
terminal and two terminal nodes (0 and 1). The nodes are
ordered into K+1 levels. A non-terminal node is labelled
by a variable index 0 < k ≤ K that indicates to which
level the node belongs (which variable it represents), and
has nk (domain size of the variable, in binary case nk = 2)
arcs pointing to nodes at level k− 1. A terminal node
is labelled by the variable index 0. Duplicate nodes are
not allowed, so if two nodes have identical successors at
level k, they are also identical. In a quasi-reduced MDD
redundant nodes are allowed: it is possible that a node’s
all arcs point to the same successor.

These rules ensure that an MDD is a canonical and
compact representation of a given function or set. The
evaluation of the function is the top-down traversal of
the MDD through the variable assignments represented
by the arcs between nodes. Figure 1b depicts an MDD
used for storing the encoded state space of the example
Petri net. Each edge encodes a possible local state, and
the possible states are the paths from the root node to the
terminal one node.

An Edge-valued Decision Diagram (EDD) is an
extended MDD that can represent the following f
function: f : {0,1, . . .}K → N∪ {∞}. The differences
between an MDD and an EDD are the following:
• At the terminal level there is only one terminal node,

named ⊥. This is equivalent to the terminal one node
in an MDD.

• Every edge has a weight and a target node. We write
〈n,w〉 if the edge has weight w ∈ N ∪ {∞} and has
target node n. In addition, we write p[i] = 〈n,w〉 if
the ith edge of the node p is 〈n,w〉 and p[i].value ≡
w, p[i].node≡ n.

• If p[i].value = ∞, then p[i].node = ⊥. This is
equivalent to an edge in an MDD that goes to the
terminal zero node.

• Every non-terminal node has an outgoing edge with
weight 0.

Figure 1c depicts an EDD storing the encoded state
space enriched with the distance information (computed
from the initial state). Every p node is visualized as a
rectangle with k slots, where k is the number of children
(domain of the variable). The ith edge starts from the ith
slot of the p node, and the value p[i].value (the weight of
the edge) is written to that slot. Usually the zero valued
dangling edges and the ∞ valued edges are not shown.

In the example of Fig. 1c let the node on the left side
of the consumer level be x. This x node has two children:
x[0] = 〈⊥,0〉 and x[1] = 〈⊥,3〉.



A. Vörös et al.: Bounded saturation-based CTL model checking 61

Fig. 1. Example of a producer–consumer system: (a) the Petri net of the producer–consumer model, (b) state space representation
with an MDD, and (c) state space and state distance representation with an EDD.

2.3. Saturation

Traditional symbolic state space exploration uses encod-
ing for the traversed state space and stores this compact,
encoded representation only. Decision diagrams have
proved to be an efficient form of symbolic storage, as
applied reduction rules provide a compact representa-
tion form. Another important advantage is that symbolic
methods enable us to manipulate large sets of states
efficiently.

The first step of symbolic state space generation is
to encode the reachable states. The traditional approach
encodes each state with a certain variable assign-
ment of state variables (v1,v2 . . .vn) and stores it in a
decision diagram. The transition relation, the so-called
next-state function, needs to be encoded in order to
encode the possible state changes. This can be done
in a 2n-level decision diagram with variables N =
(v1,v2, . . . ,vn,v′1,v

′
2, . . . ,v

′
n), where the first n variables

represent the “from” and the second n variables the “to”
states. The next-state function represents the reachable
states in one step.

Usually the state space traversal builds the next-state
relation during a breadth first search. The reachable set
of states S from a given initial state s0 is the transitive
closure (in other words: the fixed point) of the next-
state relation S = N ∗(s0). Saturation-based state space
exploration differs from the traditional methods, as it
combines symbolic methods with a special iteration
strategy. This strategy proved to be very efficient for
asynchronous systems modelled with Petri nets.

The saturation algorithm consists of the following
steps depicted in Fig. 2.

1. Decomposition: Petri nets can be decomposed into
local submodels. The global state can be represented
as the composition of the local states of compo-
nents sg = (s1,s2, . . . ,sn), where n is the number
of components. This decomposition is the first step
of the saturation algorithm. Ordinary saturation
needs the so-called Kronecker-consistent decom-
position [6,7], which means that the global transi-
tion (next-state) relation is the Cartesian product
of the local-state transition relations.

Formally: if N(i,e) is the next-state function of the
transition (event) e in the ith submodel, the global
next-state of event e is Ne = N(1,e) ×N(2,e) × . . .
×N(n,e). In case of asynchronous systems, a transi-
tion usually affects only some or some parts of the
submodels. Event locality can be easily exploited
with this decomposition. Ordinary Petri nets are
Kronecker-consistent for all decompositions.

2. Event localization: As the effects of the transitions are
usually local to the component they belong to, we can
omit these events from other submodels, which makes
the state space traversal more efficient. For each event
e we set the border of its effect, the top (tope) and
bottom (bote) levels (submodels). Outside this interval
we omit the event e from the exploration.

3. Special iteration strategy: Saturation iterates through
the MDD nodes and generates the whole state space
representation using a node-to-node transitive closure.
In this way saturation avoids the peak size of the MDD
to be much larger than the final size, which is a critical
problem in traditional approaches.

Let B(k, p) denote the set of states represented by
the MDD rooted at node p, at level k. Saturation

Fig. 2. Saturation workflow.



62 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 59–70

applies N ∗ locally to the nodes from the bottom
of the MDD to the top. Let E be the set of events
affecting the kth level and below, so tope ≤ k. We
call a node p at level k saturated, iff node B(k, p) =⋃
∀e∈E N ∗

e (B(k, p)). The state space generation ends
when the node at the top level becomes saturated, so
it represents S = N ∗(s0).

4. Encoding of the next-state function: The formerly
presented Kronecker-consistent decomposition leads
to submodels where the next-state function can
be expressed locally with the help of the so-called
Kronecker matrix: Kk,e [4]. Kk,e is a binary matrix
and belongs to event e at level k. Kk,e contains 1:
Kk,e[i, j] = 1 ⇔ j = Nk,e(i). These Kronecker
matrices contain only the local next-state relation.
Kronecker-consistent decomposition of the next-state
representation turned out to be very efficient in
practice.

5. Building the MDD representation of the state space:
First we build the MDD representing the initial state.
Then we start to saturate the nodes at the first level by
trying to fire all e events where tope = 1. After
finishing the first level, we saturate all nodes at the
second level by firing all events where tope = 2. If
new nodes are created at the first level by the firing,
they will also be saturated recursively. The procedure
is continued at every level k for events where tope = k.
When new nodes are created at a level below the
current one, they will also be recursively saturated. If
the root node at the top level is saturated, the algorithm
will terminate. Now the MDD represents the whole
state space with the next-state relation encoded in
Kronecker matrices.

6. State space representation as an MDD: A level of the
MDD generated during saturation represents the local
state space of a submodel. The possible states of the
submodel constitute the domain of the variables in
the MDD. Each local state space is encoded in a
variable.

2.4. Model checking

Model checking is an automated technique for verifying
finite state systems. Given a model defined in Petri
nets in our context, model checking decides whether the
model fulfils the specification. Formally: let M be a
Kripke structure (i.e., a state-transition graph). Let f be a
requirement expressed as a temporal logic formula (i.e.,
the specification). The goal of model checking is to find
all states s of M such that M,s ² f .

State space generation serves as a prerequisite
for the structural model checking: verifying temporal
properties needs the state-space and transition-relation
representation. CTL is widely used to express temporal
specifications of systems, as it has expressive syntax and
efficient analysis algorithms are available for it. In CTL
operators occur in pairs: the path quantifier, either A (on
all paths) or E (there exists a path), is followed by the

tense operator, one of X (next), F (future, or finally),
G (globally), and U (until). However, we only need to
implement three of the eight possible pairings due to the
duality [9] EX, EU, EG, and the remaining quantifier–
operator pairings can be expressed with the help of these
three in the following way:
• AX p≡ ¬EX ¬p,
• AG p≡ ¬EF ¬p,
• AF p≡ ¬EG ¬p,
• A[p U q]≡ ¬E[¬q U (¬p∧¬q)]∧¬EG ¬q,
• EF p≡ E[true U p].
These expressions also benefit from the locality exploited
by saturation.

2.5. Bounded model checking

The main drawback of model checking is that it needs
to explore the full state space of a model. In practice
this is not always achievable due to the high complexity
of real-life systems. However, on every occasion it is
not necessary to analyse the whole state space to decide
a property. Moreover, many design and implementation
errors in systems are so-called shallow bugs, meaning
that the path leading to the error is short.

Traditional model checking explores the full state
space of the model. Therefore it can only handle finite
state systems, as the full state space of infinite systems
cannot be explored with finite resources. Bounded model
checking gives a solution: it explores a finite, k-bounded
depth part of the state space in a breadth-first manner and
examines the specification in this smaller part.

The algorithm starts at the initial state(s) and
traverses the possible trajectories until it reaches the
bound. The main idea is to progressively increase the
bound, examining larger and larger parts of the state
space, trying to find counterexamples or witnesses for
the requirements. The drawback of this approach is that
if the full state space is not unrolled (i.e., the bound of
the traversal is chosen to be less than the diameter of the
state space), bounded model checking will not provide a
complete decision procedure (although nowadays some
advanced methods can guarantee completeness without
reaching the state space diameter [2,13]).

3. BOUNDED SATURATION

Applying saturation for bounded state space generation
is a difficult task: since saturation explores the state
space in an irregular recursive order, bounding the
recursive exploration steps does not necessarily
guarantee this bound to be global for the whole state
space representation. In order to ensure globally bounded
trajectories, the iteration order would need to be made
more similar to the breadth-first traversal. This, how-
ever, would lead to losing the efficiency of saturation
(although the resulting compact symbolic representation
of the state space is still an advantage).

In the literature there are different solutions for the
above problem both for globally and locally bounded



A. Vörös et al.: Bounded saturation-based CTL model checking 63

saturation-based state space generation. In our work we
chose the one that has already proved its efficiency [19].
The bounded saturation algorithm needs additional
information about traversal distance to be able to
compute the reachability set below a bound. MDDs are
a highly efficient storage form for state space representa-
tion, but they do not include this information. In order
to make the distance information available during the
traversal, the algorithm in [19] uses EDDs instead of
MDDs for storing distance measures implicitly encoded
into the state space representation.

Traditional bounded model checking algorithms
explore the state space incrementally in breadth-first
manner. Bounded saturation-based state space genera-
tion follows a “fire then prune” style iteration. Bounded
saturation keeps the same iteration order as saturation,
but the algorithm fires only transitions leading to local
state spaces that do not reach the bound. When bounded
saturation unrolls a local state space having a distance
from the initial state equal to the bound, the algorithm
will not extend it any further.

3.1. Implementation of bounded saturation

The bounded saturation algorithm (Fig. 3) iterates
through the state space similarly to the saturation
algorithm. BoundedEDDSaturation (Algorithm 1)
starts building the state space representation in a
bottom-up fashion, saturating the nodes by calling
BoundedEDDSaturate function (Algorithm 2).
BoundedEDDSaturate saturates the node p by firing all
events e for all states i where e is enabled: Nk,e(i) = j
for some j and for this edge i: p[i].val < bound. p[i].val
is a local distance measure. Examining this edge value
only ensures that the smallest distance will not be greater
than the bound. Additional computation is necessary to
implement globally bounded state exploration. When
the distance defined by the bound is reached, the state
space is not explored in this direction any more. After
saturating a node, and before stepping forward, the
algorithm truncates the node in order to contain the
proper bounded reachability set.
Encoding the distance measure. EDDs allow assigning
an integer value to each element of the set they encode,
providing the ability to supplement the state space
with a distance measure. During state space traversal
the algorithm also updates this distance information
incrementally. In BoundedEDDSatFire (Algorithm 3)
the algorithm increments the distance information
encoded into the edge after successfully firing a transi-
tion. This enables bounding the state space exploration.

However, despite the fact that the algorithm prunes
out steps subsequent to states located at the given
bound, some states located outside the bound can still
be reached due to the irregular order of the firings. These
states must be avoided; therefore the algorithm uses a
truncating function to omit this part of the state space
representation.
Truncating excessive states. There are two types of
truncating functions in [19]. The algorithm uses these

truncating functions after the traversal of the local state
spaces, before finalizing the computation of nodes.
1. The first one ensures exact bounded state space

representation by excluding all states located beyond
the bound measured from the initial state. This
algorithm is TruncateExact (Algorithm 6).

2. The other one provides a coarser approximation
called TruncateApprox, excluding only those states
that exceed a local bound (Algorithm 5). This
algorithm does not necessarily remove states beyond
the bound, it only ensures that states beyond a larger
bound B ·K will be excluded (where K is the number
of variables in the encoding).

The main difference between the two is that
the “exact” method computes the truncating function
recursively, by counting the exact distance measures.
The approximate algorithm decides locally which states
to prune. Consequently, it does not have to do
recursive operations, leaving more states and needing
less computation.

Our approach uses an enhanced version of the
TruncateExact (Algorithm 6) function that differs from
the one presented in [19]. We reduced the computational
overhead of exploring recursively the sub-MDD by using
a truncate cache (in the TruncateExact algorithm see
lines 4 and 13). This modification reduced the computa-
tional overhead significantly, making the “exact” truncat-
ing function competitive with the approximate one.

Our bounded saturation algorithm extends the
former one [19] with on-the-fly updates of the states and
the next-state relations. This way the user does not have
to provide the algorithm with the possible local state
spaces of the submodels. The algorithm itself discovers
these states and updates the transition relation according
to the new information instead. The extra steps add some
computational overhead, but improve the usability of the
algorithm in general.

Confirm(l,i) registers a new state i at level l and
updates the transition relations with the possible next
states of state i. When a local state i is confirmed, this
means that the state is globally reachable through some
firing sequences. In order to ensure a consistent iteration
order, the algorithm must keep transition relations up to
date. Omitting these updates would lead to incomplete
state space exploration. Confirm(l,i) is called every time
when a new state is discovered: in algorithm 1 line 3, in
algorithm 3 line 15, and in algorithm 4 line 13.

BoundedEDDSaturation executes the main, bottom-
up saturation iteration from the initial states. Calling
Confirm ensures that the initial states are registered and
the transition relations from the initial states are updated.
Consequently, the saturation algorithm starts with the
proper data structures. During the iteration the algorithm
calls BoundedEDDSatFire and BoundedEDDImage to
discover new states by firing transitions. These functions
are also responsible for updating the data structures.
After discovering a new state j, they call Confirm(l,j) to
make sure that the algorithm continues the iteration with
updated next-state relations.



64 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 59–70

Fig. 3. Bounded saturation algorithms.



A. Vörös et al.: Bounded saturation-based CTL model checking 65

4. SATURATION-BASED BOUNDED MODEL
CHECKING

Saturation-based structural CTL model checking was
introduced in [8]. Later, the algorithm was improved
in [20]. In the latter publication the authors applied a
constrained saturation algorithm to prune the next-state
function. Our algorithm follows a different idea: instead
of exploring the whole state space and then pruning
the next-state function for the computation of the fixed-
point iterations, we restrict the state space to a given
bound, and apply structural CTL model checking on this
restricted part.

Our approach has both advantages and disadvantages
compared to the approach in [20]. On the one hand,
many design and implementation errors are shallow,
thus they can be reached in a few steps, and so
bounded model checking can find these errors efficiently.
In these cases combining CTL model checking with
bounded state space exploration works quite well. On
the other hand, proving some properties (for example
invariant properties) may need the whole state space to be
explored. In these cases bounded model checking cannot
give a proper answer unless the bound is chosen to be
the diameter of the state space. Using bounded model
checking for such problems often means overhead,
and the efficiency of the fixed-point iterations becomes
the main performance factor. It is usually difficult
to define the bound where the algorithm explored a
sufficiently large part of the state space to decide about
the specification. In our work we extended the model
checking framework with three-valued logic to support
decision-making. We present this extension at the end of
this section.

In the following we demonstrate how MDD data
structures and saturation can help CTL model checking.
After that we present our bounded CTL model checking
algorithm.

4.1. CTL model checking

The CTL model checking algorithm [8] can utilize
well the data structures created during the state space
exploration. CTL operators express next-state relations
and fixed-point properties, thus we have to efficiently
compute the inverse of the next-state function N −1.

The semantics of the three implemented CTL
operators is the following:
• EX: i0 ² EX p iff ∃i1 ∈ N (i0) s.t. i1 ² p (where ²

means “satisfies”). Consequently, EX corresponds
to the inverse N function, moving one step backward
through the next-state relation. Saturation computes
this back-step by a transposed Kronecker matrix. This
way we can take advantage of the locality.

• EG: i0 ² EG p iff ∀n ≥ 0,∃in ∈ N (in−1) s.t. in ² p
so that there is a strongly connected component
containing states satisfying p. This computation needs
a greatest fixed-point computation, thus saturation

cannot be applied directly. Nevertheless, computing
the closure of this relation profits from the locality
accompanying the decomposition.

• EU: i0 ² E[pUq] iff ∃n ≥ 0, ∃i1 ∈
N (i0), . . . , ∃in ∈N (in−1) s.t. in ² q and im ² p for all
m < n. Informally: we search for a state q reached
solely through states satisfying p. The computation
of this property needs a least fixed-point computation,
which can benefit from the efficiency of saturation.

Saturation builds Kronecker matrix-based next-state
representations. This makes the building of the inverse
relation easy, since if Ne = N(1,e) × N(2,e) × . . . ×
N(n,e), then N −1

e = N −1
(1,e)×N −1

(2,e)× . . .×N −1
(n,e), where

N −1
(k,e) is the inverse next-state relation of N(k,e) ∀k ∈

1 . . .n. This inverse next-state relation is expressed
by a Kronecker matrix: if K(k,e) is the Kronecker
representation of N(k,e), then N −1

(k,e) is expressed with
KT

(k,e), where KT is the transposed matrix of K.
Before performing saturation in the case of the EU

operator, we have to classify events into categories, in
order to define the breadth-first and the saturation-based
steps in the fixed-point calculation. The algorithm needs
this classification because saturation can be applied only
to those events that do not lead the path out of p. We need
this constraint because of the irregular order in which
saturation explores states.
• An event e is dead with respect to a set of states S

if N −1
e (S)∩ S = /0. These events are omitted from

the fixed-point calculation.
• An event e is safe if it cannot lead from outside S to

states in S, formally: /0⊂N −1
e (S)⊆ S.

• All other events are unsafe.
With the help of this categorization, we decompose the
fixed-point calculation into two steps:
1. Computing the closure of relations of the safe events

can be efficiently done by saturation.
2. By breadth-first traversal the algorithm explores

unsafe events.
We have to filter out those states reached by unsafe

steps that do not satisfy p or q by computing the inter-
section of p∪ q. This intersection is evaluated in every
iteration. The efficiency of EU computation depends
highly on the efficiency of the saturation steps. The
number of breadth-first steps (and intersection opera-
tions) depends on the model and the temporal logic
formula itself. Saturation makes more efficient only the
exploration of the safe part.

4.2. Bounded CTL model checking algorithm

Our approach presented in this paper is the first
that combines saturation-based model checking with
bounded saturation-based state space traversal (Fig. 4).
It has many advantages compared to the traditional
structural model checking algorithms; however, there are
still many directions to improve it.



66 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 59–70

Fig. 4. Bounded model checking process.

Bounded model checking has three input parameters:
• the initial bound (B), which is the first bound where the

algorithm stops and executes model checking;
• the specification to be examined on the Petri net model;
• and an increment (δ ), which is used to compute the

next bound.
First, the algorithm unfolds the state space to the

distance of the initial bound (b := B). The output of the
state space generation is the state space encoded in an
EDD. Before starting the CTL model checking, the EDD
is converted into an MDD by throwing away the distance
information and applying the MDD reduction rules. The
main advantage of converting the EDD to an MDD is that
MDDs are usually more compact than EDDs. (Note that
the reason for this compaction is not only the smaller data
structures needed to represent edges, but also that the
applied reduction rules may merge more nodes than in
EDDs.) Since CTL model checking is usually a memory-
intensive task, it is important to make the state space
representation as compact as possible.

The saturation-based CTL model checking
algorithm is executed on the bounded state space repre-
sentation MDD. If the result of the model checking is
equal to that expected, the algorithm will stop. Otherwise
we have to check if the state space diameter is reached
(i.e., the full state space has been explored). If neither
the result is the expected one nor the full state space has
been discovered yet, the algorithm will continue running
with an increased bound b := b+δ .

The main advantage of this approach is that the
analysis supports the full CTL semantics, which is
usually not the case for traditional bounded model
checkers. This is complementary to the wide-spread
automaton theoretical approach, where the examined
properties are expressed with the help of linear temporal
logic, and the model checker unfolds the automaton
till the given bound in order to examine all possible
behaviours. Our structural model checking algorithm
follows a completely different approach.

4.3. Decision-making with three-valued logic

Classical model checking uses two-valued logic, where
the set of states is categorized according to the formula
into two sets: those states from which the property is

fulfilled and those states from which the property does
not hold. Evaluating a formula in CTL model checking
returns a set of states satisfying the formula. In the case
of nested CTL operators, the result of the nested formula
is the input for the outer formula.

The problem with bounded model checking is that
essentially it is a semi-decision procedure, thus it can
also produce an unknown result about a given property.
In our work we extended our former saturation-based
bounded model checking approach to handle uncertainty
about the specification, so it can produce three results:
true, false, or ⊥ (where ⊥ denotes the unknown result).
Three-valued logic [12,17] is a mathematical reasoning
procedure for these three values, applied in many
areas, including the analysis of asynchronous circuits,
compilers, and model checking [3,16]. First we have to
extend the logic, which can be seen in Table 1.

4.3.1. CTL semantics with three-valued logic

Our model checking algorithm computes the set of states
Strue of the model M for formula f , where Strue =
{s0 : M,s0 ² f ,s0 ∈ S}. All other states are in the set
Sfalse as for them the specification, i.e., the CTL formula,
evaluates to false. In the following we consider a CTL
expression c as a function assigning a truth value to each
state in the state space c : S → B, where S is the set of
all states in the model. The traditional model checking
question is to examine if the initial state is in the states
fulfilling the specification s0 ⊆ Strue or not (therefore the
result is either true or false).

Traditional fixed-point computations divide the state
space into the states where the fixed-point computation
evaluates to true and to the states where it evaluates
to false. However, when computing fixed points in
bounded, partial state spaces, this kind of partitioning
is usually unachievable. Let us demonstrate this with

Table 1. Truth tables of the three-valued logic



A. Vörös et al.: Bounded saturation-based CTL model checking 67

a simple reachability property EF p. When evaluating
this property on a bounded state space, we can identify
those states where the property evaluates to true. From
these states a p state is reachable. However, we cannot
conclude anything certain about those states from which
p is not reachable in this bounded, thus partial state
space. Further states must be explored to prove either the
true or the false result. So evaluating EF p on a bounded
state space will result {true,⊥} unless a sufficiently large
state space is explored.

The main advantage of using three-valued logic is
that the value unknown result suggests that the state
space needs to be explored further, and false suggests
that the model checking procedure is completed. In the
classical two-valued logic bounded model checking the
false result does not provide any information about what
caused the property to evaluate to false.

As we stated earlier, evaluating a CTL formula in
three-valued model checking will label the set of states
with one of three possible values: {true, false, ⊥}.
Therefore the CTL formula can be described with a
three-valued c : S → {true, false,⊥} function. Similarly
to the two-valued case, Strue represents the set of states
where all elements of S are labelled with true, Strue = {s :
s is labelled with true,s ∈ S}. We define the sets S⊥ and
Sfalse similarly.

In the following we introduce the semantics of the
basic CTL operators. The semantics of the remain-
ing operators can be derived by duality rules (see
Section 2.4).

EX: The traditional EX operator makes a backward
step, so the EX p expression evaluates to the
SEX = N −1(p) two-valued set. This can be
generalized with the help of three-valued logic. In
the three-valued result set, every s ∈ S state will
be labelled with (where S is the set of all known
states):
• true, if s ∈ SEX;
• false, if s /∈ SEX and s is not on the border of

the bounded state space (e.g there is at least one
explored state that is reachable from s);

• ⊥ otherwise.
EU: The traditional EU operator computes a least fixed

point. If SEU is the state set satisfying E[p U q]
using two-valued logic, then by using three-
valued logic, every s ∈ S state will be labelled
with:
• true, if s ∈ SEU;
• ⊥, if s /∈ SEU but there exists at least one path

from s to the border of the explored (sub)state
space whose states are all labelled with p;

• false otherwise.
EF: The traditional, two-valued EF operator computes

a least fixed point, namely the reachability
relation. If SEF is the state set satisfying EF p,
by using the three-valued EF operator every s ∈ S
state will be labelled with:
• true, if s ∈ SEF;

• ⊥, if s /∈ SEF.
Note that this expression can be evaluated to false
only if the whole state space is explored.

EG: The traditional EG operator computes a greatest
fixed point. If SEG is the state set satisfying
EG p using two-valued logic, then by using three-
valued logic every s∈ S state will be labelled with:
• true, if s ∈ SEG;
• ⊥, if s /∈ SEG, but at least one path exists from s

to the border of the state space labelled with p;
• false otherwise.

For these interpretations of the EG and EU operators
we have to determine whether at least one path exists
with p states from a given s state to the border of the
explored bounded state space. This computation can be
done with the evaluation of another CTL expression. Let
Sb represent the state set at the border of the bounded
state space representation, i.e., the states having exactly
b distance from the initial states. If the expression
E[p U (Sb∩ p)] is true for a state set S′, then ∀s ∈ S′ there
is a path from s to the border (of the bounded state space)
containing only p-labelled nodes.

With the help of three-valued logic we can further
improve the results produced by model checking,
because we can determine if the state space is worth
further exploring.

The complexity of three-valued model checking
has twice the complexity of traditional bounded model
checking. This is due to the fact that at first the algorithm
must compute the exact model checking problem based
on two-valued logic. If a witness or counterexample is
found, then the algorithm will stop. Otherwise the three-
valued model checking problem needs to be solved using
the extended labelling scheme introduced in this section.
The result is the extended information gained from three-
valued model checking.

5. EVALUATION

Our algorithm is the first to combine bounded saturation-
based state space exploration with saturation-based CTL
model checking. We have developed an experimental
implementation of the algorithm in the C# programming
language. We used a desktop PC for the measurements:
Intel Core2 Quad CPU Q8400 2.66 GHz CPU, 4 GB
memory with Windows 7 Enterprise and .NET 4.0 x64.

Our main purpose was to examine the efficiency
of our algorithm and compare it to the classical
algorithms of CTL model checking. We also examined
how saturation-based bounded state space traversal can
make CTL-based model checking more scalable. We
implemented the saturation-based CTL model checking
algorithms from [8] and combined them with bounded
saturation-based state space generation.

In this section we compare our bounded model
checking algorithm to its classical counterpart from [8].
Our experiments agree with former research results:



68 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 59–70

bounded and classical model checking are comple-
mentary techniques. Bounded model checking can
efficiently find errors in the vicinity of the initial states.
Classical model checking is more efficient for those
problems that need the examination of a larger part of
the state space.

The models used for our evaluation are well known
in the model checking community. The Flexible Manu-
facturing System (FMS) and the Kanban system are
models of production systems [5]. The parameter N
refers to the complexity of the model and it influences
the number of tokens in it. Their state space scales from
1020 to 1030 states. Slotted Ring (SR) is a model of the
communication protocol [18], where N is the number
of participants in the communication. The size of the
state space of the SR-100 model is about 10100. We
also used a model of Hanoi towers from [15]. The
state space of our Hanoi towers model with 12 rings is
531 441 states. We exploited the expressive power of
Petri nets with inhibitor arcs in order to have conciser
models. Our models are provided in PNML format,
and they can be downloaded from our homepage at
http://petridotnet.inf.mit.bme.hu/ (accessed 06.04.2012).

Our algorithm can be fine tuned by the user as
both the initial bound and the increment distance can be
defined. This way the algorithm can be set to be optimal
for smaller distances when we expect that it is sufficient
to explore a smaller part of the state space. Moreover,
it is also possible to choose both the initial bound and
the increment distance bigger to find a proof in fewer
iterations, when we assume that the property is “deeper”.
Some knowledge about the expected behaviour of the
property can significantly reduce the computational time.

In Table 2 we compare bounded model checking
with the classical approach. We have done measurements

with both the Approximative and Exact truncating
function. In Table 2 it can be seen that for some prop-
erties our bounded model checking approach is more
efficient than the classical one, for some models and
temporal properties by an order of magnitude. It can
also be seen that for the Hanoi model (which has less
concurrency) the Exact truncating function has a shorter
runtime compared to the Approximative algorithm. It is
a surprising result, as former research ([19]) stated the
contrary. Our (not yet proved) explanation is that our
cache-based optimized truncating function is responsible
for this speedup. For the other models the Approximative
truncating function performs better. The reason behind
bounded model checking performing well for these
models is that the given specification property could
always be proven in a bound less than 128. The diameter
of their state space is usually much longer: it is 4096 in
the case of the Tower of Hanoi, 420 steps in the case of
the Kanban model, and scales from 320 to 2800 steps in
the case of the FMS model.

In Table 3 we compare the bounded model check-
ing algorithm to the classical CTL model checking
algorithm, and we examine how the longer distance to
reach a proof effects their runtimes. Bounded model
checking works well for the first case, because it takes
10 steps to reach a proof. However, with the growing
number of steps needed to (dis)prove a property, the
runtime is also growing. The classical model checking
algorithm, on the contrary, always needs the same time
to prove a property.

Table 4 depicts how the decreasing number of main
iterations affects the runtime. If the algorithm increases
the bound with bigger “increments”, the algorithm will
find a proof earlier, reducing the overhead caused by the
unsuccessful bounded model checking steps.

Table 2. Runtime results of the algorithms

Model Expression Approx Exact Classic

Hanoi-12 EF(B4 > 0) 13.23 s 11.56 s 31.33 s
Hanoi-12 EF(B5 > 0) 1.93 s 1.76 s 31.27 s
Hanoi-12 EF(B6 > 0) 0.41 s 0.37 s 31.33 s
Hanoi-12 EF(B8 > 0) 0.03 s 0.03 s 31.33 s
SlottedRing-100 EF(E2 = 1∧A2 = 1) 0.39 s 0.80 s 11.23 s
SlottedRing-200 EF(E2 = 1∧A2 = 1) 1.06 s 2.06 s 88.94 s
SlottedRing-300 EF(E2 = 1∧A2 = 1) 1.42 s 3.17 s 313.05 s
Kanban-30 EG(true) 0.05 s 0.03 s 21.56 s
Kanban-30 EF(Pout4 = 1) 0.00 s 0.02 s 19.89 s
Kanban-30 EF(Pout4 = 5) 0.90 s 3.54 s 19.88 s
Kanban-30 EF(Pout4 = 10) 8.61 s 109.64 s 19.89 s
FMS-25 EG(true) 0.08 s 0.17 s 0.53 s
FMS-100 EG(true) 0.05 s 0.17 s 20.32 s
FMS-200 EG(true) 0.06 s 0.16 s 209.46 s



A. Vörös et al.: Bounded saturation-based CTL model checking 69

Table 3. Scaling of the runtime with a growing number of
necessary steps

Model Expression Approx Classic

FMS-100 EF(P1s = 10) 3.82 s 12.24 s
FMS-100 EF(P1s = 20) 24.37 s 12.20 s
FMS-100 EF(P1s = 50) 147.12 s 12.09 s
FMS-100 EF(P1s = 100) 512.27 s 12.02 s

Table 4. Scaling of the runtimes with increasing incre-
ments (expression: EF(B4 > 0))

Model Incr. Approx Exact Classic

Hanoi-12 10 6.65 s 7.74 s 31.33 s
Hanoi-12 20 3.49 s 3.76 s 31.33 s
Hanoi-12 30 2.57 s 2.62 s 31.33 s
Hanoi-12 40 2.23 s 2.59 s 31.33 s

6. RELATED WORK

Saturation-based bounded state space exploration was
presented in [19], where simple reachability and dead-
lock properties were evaluated. The approach in that
paper does not support full CTL model checking. The
algorithm served as the base of our bounded model
checking algorithm. Saturation-based CTL model check-
ing was presented in [8], where the reader can find
a more detailed introduction to saturation-based CTL
model checking. Bounded model checking is a wide-
spread technique in the field of hardware verification, for
further details see e.g. [1,2,13].

SAT-based bounded approaches proved their
efficiency in hardware verification, but there are also
efficient techniques for the analysis of Petri nets. We
refer the reader to [11,14].

7. CONCLUSION AND FUTURE WORK

We have presented a combined bounded model checking
approach for the analysis of Petri nets. Our work is
incremental in the sense that we have further improved
and combined former approaches and algorithms to
get an efficient model checking solution. This paper
introduces our first results, and they suggest that there
is still much work to be done.

In the near future we would like to make the
algorithm capable of building the state space incre-
mentally in each iteration. The main problem now
is that truncating the state space invalidates many of
the used caches and data structures. For this reason
we start building the state space representation from
scratch in each new iteration. However, at the expense
of losing some distance information, we could utilize

the benefits of incremental state space construction
by applying a simple transformation. We hope that it
would significantly reduce the runtime for large, complex
models. We also plan to use the so-called constrained
saturation to make the CTL model checking more
efficient. Although much work is ahead, hopefully the
results given in this paper convinced the reader of the
usefulness of our algorithm, and that we successfully
combined the efficiency of saturation with bounded
model checking.

ACKNOWLEDGEMENTS

This work was partially supported by the ARTEMIS JU
and the Hungarian National Development Agency
(NFÜ) in the frame of the R3-COP project. Dániel
Darvas was partially supported by the MFB Hungarian
Development Bank Plc. The authors would like to thank
Prof. Gianfranco Ciardo for his valuable advice and
suggestions.

REFERENCES

1. Biere, A., Cimatti, A., Clarke, E. M., and Zhu, Y. Symbolic
model checking without BDDs. In Proceedings of the
5th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, TACAS’99.
Springer-Verlag, London, UK, 1999, 193–207.

2. Bradley, A. R. SAT-based model checking without
unrolling. In VMCAI’11. Springer-Verlag, Berlin,
Heidelberg, 2011, 70–87.

3. Bruns, G. and Godefroid, P. Model checking partial state
spaces with 3-valued temporal logics. In CAV’99.
Springer-Verlag, London, UK, 1999, 274–287.

4. Buchholz, P., Ciardo, G., Donatelli, S., and Kemper, P.
Complexity of memory-efficient Kronecker opera-
tions with applications to the solution of Markov
models. INFORMS J. Comput., 2000, 12, 203–222.

5. Ciardo, G., Lüttgen, G., and Siminiceanu, R. Saturation:
an efficient iteration strategy for symbolic state
space generation. In Proc. Tools and Algorithms for
the Construction and Analysis of Systems (TACAS).
LNCS 2031. Springer-Verlag, 2001, 328–342.

6. Ciardo, G., Marmorstein, R., and Siminiceanu, R.
The saturation algorithm for symbolic state-space
exploration. Int. J. Softw. Tools Technol. Transf., 2006,
8(1), 4–25.

7. Ciardo, G. and Miner, A. S. Storage alternatives for large
structured state spaces. In Proceedings of the 9th
ICCPE: Modelling Techniques and Tools. Springer-
Verlag, London, UK, 1997, 44–57.

8. Ciardo, G. and Siminiceanu, R. Structural symbolic
CTL model checking of asynchronous systems. In
Computer Aided Verification (CAV’03). LNCS 2725.
Springer-Verlag, 2003, 40–53.

9. Clarke, E., Grumberg, O., and Peled, D. A. Model
Checking. The MIT Press, 1999.



70 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 59–70

10. Clarke, E., McMillan, K., Campos, S., and Hartonas-
Garmhausen, V. Symbolic model checking. In Com-
puter Aided Verification (Alur, R. and Henzinger, T.,
eds). Lecture Notes in Computer Science, Vol. 102.
Springer, Berlin, Heidelberg, 1996, 419–422.

11. Heljanko, K. Bounded reachability checking with process
semantics. In Proceedings of the 12th International
Conference on Concurrency Theory, CONCUR ’01.
Springer-Verlag, London, UK, 2001, 218–232.

12. Kleene, S. Introduction to Metamathematics. Bibliotheca
mathematica. Wolters-Noordhoff Pub., 1971.

13. McMillan, K. L. Interpolation and SAT-based model
checking. In CAV, 2003, 1–13.

14. Ogata, S., Tsuchiya, T., and Kikuno, T. SAT-based
verification of safe Petri nets. In ATVA’04. LNCS 299.
Springer, 2004, 79–92.

15. Saad, R., Dal Zilio, S., and Berthomieu, B. Mixed
shared-distributed hash tables approaches for parallel
state space construction. In 10th International
Symposium on Parallel and Distributed Computing
(ISPDC 2011), Cluj-Napoca, Romania, July 2011.
IEEE Computer Society. 2011, 9–16.

16. Schuele, T. and Schneider, K. Three-valued logic in
bounded model checking. In MEMOCODE’05. IEEE
Computer Society, Washington, DC, USA, 2005,
177–186.

17. Skolem, T. A set theory based on a certain 3-valued logic.
Mathematica Scandinavica, 1960, 8, 127–136.

18. Vörös, A., Bartha, T., Darvas, D., Szabó, T., Jámbor, A.,
and Horváth, Á. Parallel saturation based model
checking. In 10th International Symposium on
Parallel and Distributed Computing (ISPDC 2011),
Cluj-Napoca, July 2011. IEEE Computer Society,
2011, 94–101.

19. Yu, A., Ciardo, G., and Lüttgen, G. Decision-diagram-
based techniques for bounded reachability checking
of asynchronous systems. Int. J. Softw. Tools Technol.
Transf., 2009, 11, 117–131.

20. Zhao, Y. and Ciardo, G. Symbolic CTL model checking of
asynchronous systems using constrained saturation.
In ATVA’09. Springer-Verlag, Berlin, Heidelberg,
2009, 368–381.

Tõkestatud küllastamisel põhinev arvutuspuude loogikas (CTL) väljendatud
mudelkontroll

András Vörös, Dániel Darvas ja Tamás Bartha

Formaalne verifitseerimine on muutumas ohutuskriitilise ja mudelpõhise tarkvaraarenduse oluliseks osaks. Verifit-
seerimisprotsessi osana on mudelkontrollitehnika üks enim väljaarendatud viise, kuidas süsteemi käitumist ana-
lüüsida. Mudelkontroll sümbolkujul on tõhus lähenemisviis, käsitlemaks isegi keerulisi ja suure olekuruumiga
mudeleid. Küllastamine on spetsiaalset iteratsioonistrateegiat kasutav sümbolalgoritm, mis on tõhus asünkroonsete
mudelite kontrollimisel. Viimaste aastate edusammude tulemusena on leiutatud mitmeid uusi küllastamisel põhi-
nevaid algoritme, näiteks olekuruumi genereerimiseks, piiratud olekuruumi genereerimiseks, aga ka struktuurseks
mudelkontrolliks. Käesolevas artiklis on uuritud, kuidas sobib süsteemi verifitseerimiseks kahe täiustatud mudel-
kontrolli algoritmi – nimelt piiratud küllastamise ja küllastamisel baseeruva struktuurse mudelkontrolli algoritmi –
kombinatsioon. Meie töö on esimene katse ühendada nimetatud kaks lähenemist ja sel viisil käsitleda ning uurida
keerulisi või isegi lõpmatu olekuruumiga süsteeme. Meie mõõtmised näitavad, et küllastamine on tõhus ka tõkestatud
mudelkontrolli korral.


