Proceedings of the Estonian Academy of Sciences,

R TR
oi: 10. proc.2012.2. PHYSICS

Available online at www.eap.ee/proceedings

Generalized Langevin equation with multiplicative trichotomous noise

Erkki Soika*, Romi Mankin, and Jaanis Priimets

Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia; romi.mankin@tlu.ee,
jaanis.priimets @tlu.ee

Received 21 June 2011, revised 30 October 2011, accepted 12 December 2011, available online 21 May 2012

Abstract. The influence of noise flatness and memory-time on the dynamics of a generalized Langevin system driven by an
internal Mittag-Leffler noise and by a multiplicative trichotomous noise is studied. In the asymptotic limit at a short memory time
the dynamics corresponds to a system with a pure power-law memory kernel for a viscoelastic type friction. However, at long and
intermediate memory times the behaviour of the system has a qualitative difference. In particular, a critical memory time and a
critical memory exponent have been found, which mark dynamical transitions in the resonant behaviour of the system. The obtained
results show that the model considered is quite robust and may be of interest also in cell biology.
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1. INTRODUCTION

In recent years increasing attention has been paid to the constructive role of noise in nature — the
influence of noise is not restricted to destructive and thermodynamic effects but can have unexpected
ordered outcomes. In complex systems an ensemble of conditions far from thermal equilibrium and the
influence of environmental fluctuations may give rise to phenomena that are ruled out by the second law of
thermodynamics under equilibrium conditions [1]. The examples include stochastic resonance [1,2], noise-
induced multistability [3,4], hypersensitive response [5], noise-enhanced stability [6,7], and the ratchet
effect [8—10], to name a few. Particularly, the study of anomalous diffusion in complex or disordered media
has made substantial progress during the last years [11-19]. For example, the diffusion of mRNAs and
ribosomes in the cytoplasm of living cells is anomalously slow [20], and large proteins behave similarly [21].
Even intrinsic conformational dynamics of protein macromolecules can be subdiffusive [16,22]. There are
several approaches to describe anomalous diffusion processes, where the dynamical origin of a phenomenon
is considered as nonlocality, either in space or time [18]. In the case of nonlocality in time anomalous
diffusion is often connected with one of the two prominent underlying stochastic processes, namely,
continuous-time random walks [23] and fractional Brownian motion [15]. It should be noted that in some
cases both of the above-mentioned underlying stochastic mechanisms are relevant in different time scales.
For example, paper [24] has reported experimental evidence to the effect that at short times the motion of
lipid granules in living cells are best described by continuous-time random walk subdiffusion, but at longer
times the stochastic mechanism is closest to subdiffusive fractional Brownian motion.
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One of the possibilities for modelling anomalous diffusion in physical and biological systems can be
formulated in the framework of the generalized Langevin equation (GLE) [15,17-19]. In most cases a
GLE is obtained by replacing the usual friction term by a generalized friction term with a power-law
memory [15,16,19]. Physically such a friction term has, due to the fluctuation-dissipation theorem, its
origin in a non-Ohmic thermal bath, whose influence on the dynamical system is described with a power-
law correlated additive noise in the GLE, e.g., with fractional Gaussian noise which is closely related to
fractional Brownian motion [15,17]. Although a GLE with a power-law friction kernel is very useful
for modelling anomalous diffusion processes, the corresponding power-law correlated noises have some
nonphysical properties, e.g., absence of a characteristic memory time and infinite variance. Thus, recently
Vifiales and Despdsito [25] have introduced a more general noise with a Mittag-Leffler correlation function
(called the Mittag-Leffler noise) in the GLE. Notably, for certain values of the parameters that characterize
this noise one can reproduce a power-law correlation function, a standard Ornstein—Uhlenbeck noise with an
exponential one, and a white noise. The behaviour of the GLE with an additive noise has been investigated
in some detail [17,19], but it seems that analysis of the potential consequences of interplay between a
multiplicative noise and memory effects is still rather rare in literature [26,27]. This is quite unjustified in
view of the fact that the importance of multiplicative fluctuations and viscoelasticity for biological system:s,
e.g., living cells, has been well recognized [21,28].

Thus motivated, we have recently considered a GLE with a Mittag-Leffler memory kernel subjected to an
external periodic force [29]. The influence of the fluctuating environment was modelled by a multiplicative
trichotomous noise and an additive Mittag-Leffler noise. In the long-time limit this model enables an exact
solution for the first moment of the output signal and shows that stochastic resonance (SR) is manifested
in the dependence of the response of the GLE upon the amplitude of the trichotomous noise. Moreover,
the results of [29] predict that the output signal of the GLE depends crucially on the memory time of the
Mittag-Leffler noise.

The purpose of the present paper is to provide a comprehensive view of our approach to the GLE with
multiplicative trichotomous noise, more fully describing the results published in [29], and expanding upon
them. Specifically, amongst other things we will consider comprehensive construction of exact formulas for
the first moment of the output of the basic model-system (in [29] these formulas have only been outlined
without proofs), and discuss some novel phenomena where the role of memory time and parameters of the
multiplicative noise are crucial. We are reporting here the following novel results:

(i) We will show that at high values of noise flatness the output signal of the GLE exhibits a hypersensitive
response to noise amplitude. Particularly, we will demonstrate that the effect is very pronounced at high
values of the characteristic memory time of the Mittag-Leffler noise.

(i1) We will also establish a SR vs the switching rate of the multiplicative noise and show that this effect can
be enhanced by variations in the characteristic memory time of the internal noise.

The structure of the paper is as follows. In Section 2 we present the basic model investigated. Exact
formulas for the mean particle displacement are derived in Section 3. In Section 4 we analyse the behaviour
of the output response and expose the main results of this paper. Section 5 contains some brief concluding
remarks.

2. MODEL

We start from the traditional GLE model in one selected direction for a particle of the unit mass (m = 1) in

the fluctuating harmonic potential
2

V(X.1) = (0 +2(0) n

subjected to a linear friction with a memory kernel 7(¢), an additive periodic force, and an internal random
force &(1) of zero mean:

X+ /0 tn(t—t’)X(t/)dt'—i—a&XV(X,t) = Aosin (Qr) +&(1), )
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where X (¢) = ‘%, X (t) is the particle displacement, and Ay and Q are the amplitude and the frequency of
the harmonic driving force, respectively. The random force &(7) is Gaussian and fully characterized by its

autocorrelation function satisfying the fluctuation-dissipation relation

(EMEW) =ksTn (|t —1), 3)

which in turn is a consequence of the fluctuation-dissipation theorem [30]. In Eq. (3) T is the absolute
temperature of the heat bath and kp is the Boltzmann constant. It is well known that if the correlation
function (3) is a Dirac delta function, the stochastic process X () described by Eq. (2) with Z(t) = Ao =0
is Markovian and its dynamics can be straightforwardly obtained [31]. However, in order to describe the
non-Markovian dynamics of an anomalously diffusing particle, one must take into account the memory
effects by a long-time tail noise. Usually a power-law correlation function is employed to model such
processes [15,16,19]. As in [25], in this paper we assume a more general correlation function modelled as

n(r) = Ea {— (;’)a] , 4)

where T acts as a characteristic memory time, Y is a constant (called friction constant), and the exponent
a can be taken as 0 < o < 2, which is determined by the dynamical mechanism of the physical process
considered. The Eq(y) function denotes the Mittag-Leffler function [32], which behaves as a stretched
exponential for short times and as inverse power-law in the long-time regime. Note that if o = 1, the
correlation function (3) with Eq. (4) reduces to an exponential form which describes a standard Orstein—
Uhlenbeck process [31]. In the limit T — O the proposed correlation function reproduces a power-law

correlation function T
EOE) ~ Fr g

which has been previously used to model viscoelastic properties of a medium [13,19]. Moreover, taking
the limit @ — 1 in Eq. (5), we obtain that the noise & () corresponds to a white noise and consequently to
non-retarded friction. Note that the model (2) with the kernel (4) for free particle, i.e., V = Ag = 0, has
been analysed in [25], where it is shown that, for long times # > y1/(o —2) > 7, the particle motion is
subdiffusive for 0 < o < 1 and superdiffusive for 1 < o < 2:

(&)

2T,

~—— %  — oo, 6
1+ ) ©)

o*(t) = (X*()) — (X (1))?

Let us note that a GLE (2) without either multiplicative noise or periodic force, Z = Ay = 0, was considered
in [33]. Particularly, at the deterministic initial conditions X (0) = xo and X (0) = v, explicit expressions of
the position mean value (X (¢)) and the variance 6(¢) are obtained in the case of an overdamped limit (i.e.,
discarding the inertial term X in Eq. (2)):

(X (1)) =voG(t) +x0(1 — @*I(1)), (7
o’ (1) = ksT [21(t) — G*(t) — 0*I*(1)] , (8)
where
1 0? ,
It)=— [1_PEoc (—pyt )} )
G(t) = %1 (1), (10)
p=—71 (11)

:/y_i_a)ZTO!'
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The asymptotic behaviour of the moments (X (¢)) and 6(¢) in the long-time limit can be obtained by using
the asymptotic behaviour of the Mittag-Leffler functions [32]. Then, for ®*7%* > ¥+ w>t% the asymptotic
expression for (X) and 67 is given by

_ ysin(am) <x0r<a) vol' (o + 1)> 7 (12)

<X(t)> T wlrn 1o w2+l

(13)

5 kgT y?sin?(am)[? (o)
o°(t)~ o <1 - T ) .
Note that the asymptotic expressions (12) and (13) have the same form as obtained in the case of the pure
power-law memory kernel [33]. Moreover, as opposed to the free particle diffusion, the variance of the
displacement approaches its equilibrium value due to the confining potential.

Fluctuations of the eigenfrequency ® (see Eq. (1)) are expressed as a trichotomous process Z(z) [34].
Although both dichotomous and trichotomous noises may be useful in modelling natural coloured
fluctuations, the latter is more flexible, including all cases of dichotomous noise [34,35]. Furthermore, it is
remarkable that for trichotomous noises the flatness parameter k can be anything from 1 to oo, unlike the
flatness for Gaussian coloured noise, kK = 3, and symmetric dichotomous noise, k = 1. This extra degree of
freedom can prove useful in modelling actual fluctuations. The trichotomous process is a random stationary
Markovian process that consists of jumps between three values a, 0, and —a. The jumps follow in time
according to a Poisson process, while the values occur with the stationary probabilities

ps(a) = ps(=a) = q,ps(0) = 1 =24, (14)
with 0 < ¢ < 1/2. The mean value of Z(¢) and the correlation function are
(Z(1)) =0, (Z(t+7)Z(t)) = 2qa’e™"". (15)

It can be seen that the switching rate v is the reciprocal of the noise correlation time 7, i.e, T. = 1/v. The
flatness parameter k of the noise Z(¢) proves to be a very simple expression of the probability ¢

_(ZM)) 1
e Taia (16)

The probabilities W, (¢) that Z(¢) is in the state n € {1,2,3}, z; = a, zo0 = 0, z3 = —a, at the time ¢ evolve
according to the master equation

d 3
%Wn(t) =V Y SuWnlt), (17)
m=1
where
qg—1 q q
Syum = 1-2¢g —2qg 1—-2q]. (18)
q g q-—1

The transition probabilities 7;; = p(z;,t + 7|z;,t) between the states z,, n = 1,2,3, can be represented by
means of the transition matrix 7;; of the trichotomous process as follows:

Tij = 6;j+ (1 —e "")Sij, (19)

where §;; is the Kronecker symbol. The trichotomous process is a particular case of the Kangaroo
process [36]. It is remarkable that the results of the present paper can be interpreted in terms of cross-
correlation intensity between two dichotomous noises. Namely, the trichotomous noise Z(f) can be
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represented as the sum of two cross-correlated zero-mean symmetric dichotomous noises Z;(¢) and Z,(t),
i.e.,

Z(t)=2Z,(t)+ Za2(1).
The dichotomous noises Z; () and Z,(¢) are characterized as follows: zj, z2 € {(1/2)a,—(1/2)a} with
Vi = v, = Vv and the correlation function

2
a” 4 L.
(Z(0Z,(t")) = piy e Vit =12, (20)

where p; = 1 and p;; = p € (—1,1) with i # j being the cross-correlation intensity of the noises Z; (¢) and
Z,(t). In this case the probability ¢ = (1+ p)/4, whence it follows that the correlation coefficient p and the
flatness Kk of the trichotomous noise Z(¢) must be related as

— 2
C1+4p

It is obvious that the noise flatness Kk = 2 corresponds to p = 0, i.e., to the case of two statistically
independent dichotomous noises. Let us note that such a cross-correlation between dichotomous noises may
result from either of the two following reasons: the two noises are either partly of the same origin or are
influenced by the same factors. Notably, earlier some cross-correlation-induced effects have been considered
in the context of ratchet models in [37,38], where it has also been suggested that cross-correlation between
coloured noises may provide some understanding as to why structurally very similar motor proteins with two
heads, such as kinesin and dynein motor families, move in opposite directions on the micro-tubules despite
sharing the same environment and experiencing the same periodicity, like with the conventional kinesin and
ncd [39].

2n

3. EXACT SOLUTION

In what follows we will analyse the behaviour of the first moment (X) of the output of model (2) in the
subdiffusive case, i.e., 0 < a < 1. To find the first moment of X, we use the well-known Shapiro-Loginov
procedure [40], which for a trichotomous noise Z(¢) yields

d d

—(ZP)=(Z—P)—-Vv(ZP 22
Glzw = (z5@)-viza). )
where @ is an arbitrary functional of the process Z(). From Eqgs (1), (2), and (22), we thus obtain an exact
linear system of six first-order integro-differential equations for six variables, x; = (X), x, = (X), x3 = (ZX),
x4 = (ZX), x5 = (Z*°X), x6 = (Z*X):

X1 =Xz,
t

B =— %X —x3— / Nt —1")x(t")dt’ +Agsin(Q1),

0
X3 =— VX3 + x4,
t
X4 =—Vx4—0°x3—xs—e / Nt —t')e" x4(t')dr, (23)
0
X5 =— Vx5 +x6+ 2qa2wcl,

X6 —2qa’iy =—V (x(, — 2qa2x2) —a*(1 —2q)x3 — @? (x5 — anle)

- ew/tn(t —t) [ewl (x6(t') — 2qa2x2(l‘/))} dr'.
0
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The solution of Eqs (23) can be formally represented in the form

t

6
1) =Y Ha(£)x(0) + Ao / [Ho(t') + 2qa*Hig ()] sin [Q (t — ') ] ',
k=1

0

(24)

where the constants of integration x; (0) are determined by initial conditions. The relaxation functions Hy(¢)
with the initial conditions Hy(0) = 0y can be obtained by means of the Laplace transformation technique.
From Eqgs (23) we obtain the following system of algebraic linear equations for Hy(s):

sHy — Ho =0y,

(s+7(s)) Hox + 0*Hyi + Ha =8,

(s+ V) Hy — Hy =83,

[s4+ V41 (s+ V)] Hax + 0*Hy + Hsy =8,
(s+ V) Hs — He — 2qa*vHy, =3s,

[s+v+n(s+Vv)] <ﬁ6k — 2qa2ﬁ2k> +(1—2q) azl%k + ? <ﬁ5k — 2qa2ﬁ1k> =06k — 2qa252k,

where k =1,...

,6 and Hy(s) is the Laplace transform of Hy(r), i.e.,

oo

ﬁik(s) = /eiStHik(t)dl.

0

The solution of Eqs (25) for Hx(s) reads as

where

Hi(s) =

~

le(s)

ﬁg(s) = —

His(s) =—

His(s) =

Hig(s) =

D(s)

1
D(

) { =202 s+ v+ R(s+ V)] + (547 ()

X [[(s+v)(s+v+r7(s+v))+a)2]2—(1 —2q)a2] }

: N 2
:m{[(s+v)(s+v+n(s+v))+wz] —az},

Dzs)[s—i—v+ﬁ(s—|—V)] X [(s+v)(s+v+ﬁ(s+v))_|_w2]7
e et v Fils )
by (6 E+V RV +07],
1 ~

D) STV ANV,
1

D(s)’

= (1-2q)a* [(s+ V)N (s+ V) —sn(s) +v(2s+ V)]

+ [(s+v)(s+v+ﬁ(s+v))+w2]
< {[s(s+7(9) + @] [(s+V)(s+V+T(s+V)) + 0] —a’},

(25)

(26)

27)
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a—1

fi(s) = —2

e (28)

and

h(s) = Hya(s) +2qa*Hg(s) = {[(s+v)(s+v+ﬁ(s+v))+a)2]2—(1—2q)a2}- (29)

D(s)

One can check the stability of solution (24), which, according to the results of paper [41], means that
the solutions s; of the equation D(s) = 0 cannot have roots with a positive real part. This requirement is met
if the inequality

2 o -1
2 I ) 2 yv® 2 Yv 2
a”<ag;=® [a) +Vv +1+(rv)fx] [a) +2q<1+(rv)“+v >] (30)

holds. Henceforth in this work we shall assume that condition (30) is fulfilled. Thus in the long-time limit,
t — oo, the memory about the initial conditions will vanish as

~

6
Yh(0)x1(0) ~(1+a)
H 0)==——"—"-+24+0 31
k; w(t)u(0) = F— oy (s70) @1
and the average particle displacement (X) ,; = (X)|,_,, is given by

t
(X). = A / h(t — ') sin(Qe')dr'. (32)

0

From Eq. (32) it follows that the complex susceptibility x () of the dynamical system (2) is given by

~

x(Q) =x'(Q) +ix"(Q) = h(-iQ), (33)

where ' (Q) and x"(Q) are the real and the imaginary parts of the susceptibility, respectively. Equation (32)
can be written by means of the complex susceptibility as

(X),s =Asin(Qr +0), (34)
with the output amplitude
A=A 7] (35)
and the phase shift
x//
® = arctan (—/> . (36)
4

Using Eqs (27) and (29), we obtain for A that

A=A (37)

0 627
where
2
Cr = g1 +85— (1-29)a’| +4(1—2q)a’gs,

Cr =g +83]Ci+4qa® { (2 +82) (384 — g182) + @ [q (&2 +&3) + (1 —29) (g182 +g384)] }

(38)
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and
o
7

y(vi+ Q)% [Cos(a(p) +1%(v2 +Q?)
14 720(v2 4 Q%)% +2(v2 + Q) 1% cos(atg)

QY [cos (%) + (TQ)“}

g1 =0’ +v Q%+

2 A2
g2 =0 — Q7+ ’
1+ (1Q)* +2(1:Q)acos(%)
g3 =2Qv+ A+ @) sin(a ) , &
14 720(V2 +Q2)% +2(v2 4 Q2) 2 7% cos ()
a2
g4 = M

14 (1Q)%* 4+ 2(1Q)% cos (%)

et (2
¢ =arctan v )

Finally, from Eqs (27), (29), and (33) one can conclude that the real and the imaginary parts of the
susceptibility are given by

1
X = G [82C1 —2qa’g1 (g1 + 83 — (1 —29)a*)] ,

1
1= G [84C1 +2qa°g3 (g1 + g5 + (1 —2q)a?)] .

The analytical expressions (37)—-(39) belong to the main results of this work. They fully determine the
behaviour of the average oscillator displacement in response to system parameters in the long-time limit.

4. TRICHOTOMOUS-NOISE-INDUCED RESONANCE

By the use of Eqs (37)—(39) we can now explicitly obtain the behaviour of A(7) for any combination of
the system parameters «, ¥, a, £, g, and . Figure 1 depicts the behaviour of the response A versus the
characteristic memory time 7 for different values of the noise flatness parameter k and the memory exponent
a. In this figure one observes resonance versus 7, which apparently gets more and more pronounced as the
flatness parameter k = 1/2q increases. Thus, as a rule, there exists an optimal memory time at which the
response of the output signal to the external periodic force has a maximal value.

Our next task is to examine the dependence of the response A on the noise amplitude a. In Fig. 2 we
depict the behaviour of A(a) for various values of the system parameters 7 and ¢g. As shown in Fig. 2, all
curves exhibit a resonance-like maximum at some values of a, i.e., a typical SR phenomenon appears with
increase in a. Next we consider, in brief, another interesting SR phenomenon — hypersensitive response
to noise amplitude. A peculiarity of Fig. 3 is the rapid decrease in A from maximum to minimum as a
increases. It is noteworthy that in the case of dichotomous noise such an effect is absent. The effect is very
pronounced at low values of the switching rate v and at large values of the flatness parameter k = 1/2q .
To throw some light on the above-mentioned effect, we shall now briefly consider the behaviour of the SR
characteristic A? in the parameter regimes:

1
v2<<Tla<<q\w2—Qz\<<w2, g<1, > —

Q’ (40)
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(@) (b)

3.0

Fig. 1. A plot of the dependence of the response function A on the characteristic time T at Ag =0 = Q =1, y=0.8, a> = 0.5,
v =0.1. Solid line: g = 0.5; dashed line: g = 0.4; dotted line: ¢ = 0.35. Panel (a): @ = 0.8; panel (b): o =0.5.

1.0 1.5 2.0 2.5 3.0 35 4.0 1.0 1.5 2.0 25 3.0 35 4.0

Fig. 2. Stochastic resonance for the response function A vs the multiplicative noise amplitudeaatAg=w=1,Q=1.8, v=0=0.1,
Y= 1.4. Solid line: 7 = 5.0; dashed line: 7 = 1.0; dotted line: T = 0.1. Panel (a): ¢ = 0.4; panel (b): ¢ = 0.2.

10}

08|

ool . . . N ]
0.0195 0.0200 0.0205 0.0210

Fig. 3. A plot of the dependence of the response function A on the noise amplitude a in a region of hypersensitive response (Eqs (37)
and (40)). System parameter values: Ag =w =1, Q=0.99, v = 10_6, Y=2x 1074, t =10, ¢ = 0.1, and qg=>5x 1073, The
value of A? at the local maximum is A2, = 30292; A2 = A% /A2,
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and

1
V<t < glo* - QY <0’ g<1, < g 41)
In these cases it follows from Eqs (37)—(39) that A2 reaches the maximum
4o 2o 2
Q% 1
AI%lax%Aﬁz'z(n'a)a > (42)
¥? sin
2
2
1
A2~ A2 1 ;T =, 43
max 0 y2Q2a sin2 (@) Q ( )
2
at
a:amax%‘wz_gg}a 44)
and the minimum o
2 2 Ysin’ <7> 1
Amin & A a2 (@2 — Q) T> 5 (45)
na
, P () !
Amin %AO 6]2((02—92)4 y T 5’ (46)
at
Q% — 0?|
a = Qmin ~ 17—2q 47)

For sufficiently strong inequalities (40) and (41), Arznin tends to zero and A2, grows up to very large

values. Thus, in the cases considered the response A is extremely sensitive to a small variation in a:
Ad = apin — Amax = ¢ ’Qz — wz\ < w?. Ttis important to note that such a phenomenon gets more pronounced
as the characteristic memory time 7 increases (see Eqs (42) and (45)).

The existence of a SR vs a effect depends strongly on other system parameters. From Eqs (37)—(39)
one can easily find the necessary and sufficient conditions for the emergence of SR due to noise amplitude
variations. Namely, a nonmonotonic behaviour of A(a) appears in the stability region, 0 < a < a. (see
Eq. (30)), for the parameter regime where the following inequalities hold:

a > a2 >0, (48)
where a2, is the positive solutions of the equation

P(1-29){(1-2q) (g1 +83) (384 — 8182) +2 (1 — &3) [a (g1 +&3) + (1 —29) (g182+ 8384)] }
— 2 (g2 +83) g (&2 +83) + (1—29) (2182 +g384)] + (8 +23)° (81282 — g384) = 0. (49)

In Figs 4 and 5 conditions (48) are illustrated in the parameter space (Y, ¢) with three panels in either.
The dark grey shaded domains in the figures correspond to those regions of the parameters ¥ and ¢« where
SR versus a is possible. Note that in the light grey regions the response A(a) formally also exhibits a
resonance-like maximum, but in those regions the first moment (X (7)) is unstable at the resonance regime,
and that renders formula (37) physically meaningless. Two findings can be pointed out. First, if the memory

time 7 is sufficiently small,
2

v+ V521407

there exists a critical memory exponent ¢, which marks a sharp transition in the behaviour of the system
dynamics. At @, one of the boundaries ¥; »( ) between the resonance and non-resonance regions tends to

T< Ter = (50)
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. A plot of the phase diagrams for stochastic resonance (SR) in the y—« plane at Ag = @ = 1, v = 0.8, and ¢ = 0.45. In the
unshaded region resonance of A vs the multiplicative noise amplitude a is impossible. In the light grey region the function A(a)
exhibits a maximum at a,, > dcr, i.€., at a,, the first moment of the particle displacement (X (¢)) is unstable, see Eq. (30). In the dark
grey domain (the stability region) a SR of A vs a occurs. The thin dashed line depicts the position of the critical memory exponent
0. Panel (a): Q = 1.8, 7 =0.2; panel (b): Q = 1.8, 7= 0.85; panel (c):  =0.6, T=0.2.

infinity. From Eqs (39) and (49) it follows that the critical memory exponent ¢, is determined as a solution
of the following equation:

Ol T
2

T
2

[T2Q(v2 +QZ)%] % + [T(VZ +Qz)%} o cos( ) + (TQ) % cos( 0t @) + cos [Occr ((p + )] =0. (51)

It can be seen from Eq. (51) that the minimal value of a critical memory exponent, Oy > Oy min, COrresponds
to the case of a vanishing memory time, T — 0, i.e. (see also [26]),

T

Oler min = Q .
T+ 2arctan <v>

Particulary, in the limit T — 7, the critical exponent ¢, tends to 1. Here we emphasize that in the case
of T > 1, such a transition of the system dynamics is absent (see Figs 4b and 5b).

The second finding is that depending on the driving frequency Q, three different cases can be discerned
where the inequality (50) holds.

(52)
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Fig. 5. The phase diagram for stochastic resonance vs a in the y—o plane in the case of adiabatic noise, v = 0. Panel (a): Q = 1.8,
T =0.2; panel (b): Q = 1.8, 7= 0.85; panel (c): Q = 0.6, T = 0.2. Other system parameters are the same as in Fig. 4.

(i) For Q> < ?, SR vs a appears for all values of ¥ when a < ¢, but if & > o, there is an upper
border () above which SR is absent (Fig. 4c).

(ii) In the case of ®* < Q? < ®? + v? for a < 0, the resonance exists only if ¥ > Q? — @?; in the region
o > 0, the resonance is absent.

(iii) At the driving frequency regime Q> > ®? + v2, if o < @, there are two disconnected regions
(Fig. 4a) where SR vs a is possible.

An important observation here is that the region where the resonance is not possible grows as the noise
switching rate v increases (cf. Figs 4 and 5). Thus, in this case a variation in the values of the friction
parameter Y induces reentrant transitions between different dynamical regimes. Namely, an increase in y
can induce transitions from a regime where SR vs a is possible to a regime where SR is absent, but SR
appears again through a reentrant transition at higher values of y. Note that in the case of a long memory
time, T > T, the critical memory exponent ¢, is absent and the dynamical system (2) behaves qualitatively
similarly to the case of a < ay; (cf. Fig. 4a, b). It is remarkable that the critical memory exponent 0, the
critical memory time T, and the boundaries 7; »( ) between the resonance and non-resonance regions are
independent of the noise flatness k. Only the stability region depends on k, increasing as does the noise
flatness (cf. Figs 4b and 6).

The phenomenon of SR is not restricted to the nonmonotonic dependence of A on the noise amplitude a.
Figure 7 depicts the behaviour of the response A2 versus the noise switching rate v for different
representative values of the memory time 7 and the noise flatness parameter ¢ = 1/2x. In this figure one
observes resonance versus vV, which apparently gets more and more pronounced as the memory time T
increases.
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Fig. 6. The phase diagram for stochastic resonance (SR) vs a in the y—o plane in the case of large flatness. The parameter values:
Ag=w=1,v=0.8,7=0.85, Q= 1.8, and ¢ = 0.05. In the unshaded region SR vs a is impossible. In the light grey region
the function A(a) exhibits a maximum at a,, > dcr; see Eq. (30). In the dark grey domain SR vs a occurs (in the stability region,

am < der).

(a) (b)
7.0 10

6.5

6.0
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45
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Fig. 7. Stochastic resonance for A2 versus the noise switching rate v, computed from Eq. (37) at various values of the parameters ¢
and 7. Other parameter values: Ag = o = 1, A =a=0.3,0=0.8, and Y= 0.09. Solid line: 7 = 0; dashed line: 7 = 0.1; dotted
line: 7 = 1. Panel (a): ¢ = 0.1; panel (b): ¢ = 0.4.

S. CONCLUSIONS

We have derived, in the long-time regime, the exact formulas (see Eqs (37)—(39)) for the output response of a
system with memory described by a generalized Langevin equation under the impact of an external periodic
force. The influence of fluctuations of environmental parameters on the dynamics of the system is modelled
by a multiplicative three-level noise and by an internal Mittag-Leffler noise. This study is an extension of
our recent short conference paper [29], where we presented the model and some initial results about SR
vs the amplitude a of the multiplicative noise. In the current paper we have given a much more detailed
analysis of the same model, focusing on the influence of the characteristic memory time 7 of the friction-
kernel on the trichotomous-noise-induced SR. As one of the new results (in comparison with paper [29]) we
have established very sensitive response of the mean particle displacement to small variations in the noise
amplitude at high values of the multiplicative noise flatness, i.e., the amplitude A of the output signal of
the GLE displays a quick jump from a very high value to a low one as the noise amplitude a increases but
a little. It is important to note that such a phenomenon was previously reported for a stochastic oscillator
without memory in [2]. As another new result we have found a nonmonotonic dependence of the response
function on the switching rate v of the multiplicative noise (i.e. SR vs v). It is remarkable that both effects,
i.e., the hypersensitive response A vs a and the SR vs v, get more and more pronounced as the characteristic
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memory time 7 increases. The results of the present work and [29] show that the model considered is quite
robust and may be of interest also in cell biology, where issues of memory and multiplicative coloured noise
can be crucial [15,21,28]. A further detailed study is, however, necessary, especially an investigation of the
behaviour of the velocity autocorrelation function, which is an important measure for correct interpretation
of experimental results [42]. Some hints about the unexpected influence of multiplicative noise on the
behaviour of autocorrelation functions can be found in [43], where a model system (similar to model (2))
with multiplicative white noise was considered.
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Multiplikatiivse kolmetasemelise miira toime iildistatud Langevini vorrandis

Erkki Soika, Romi Mankin ja Jaanis Priimets

On uuritud miira tasasusparameetri ja mélu aja mdju tildistatud Langevini vorrandiga kirjeldatava siisteemi
diinaamikale. Uldistatud Langevini vorrandile on rakendatud kaht miira: Mittag-Leffleri miira ja multipli-
katiivset kolmetasemelist Markovi protsessi. On leitud kriitiline milu kestus ja astmeniitaja, mille korral
avaldub diinaamilises siisteemis resonantsindhtus. Saadud tulemused niitavad, et uuritud mudelil on
potentsiaali rakendusteks eri valdkondades, niiteks rakubioloogias.



