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Abstract. We study Morita invariants for strongly Morita equivalent partially ordered semigroups with several types of local units.
These include the greatest commutative images, satisfying a given inequality and the fact that strong Morita equivalence preserves
various sublattices of the lattice of ideals.
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1. INTRODUCTION

Since the 1970s a number of results have appeared on generalizing the Morita theory of rings with identity
to monoids [4,10], associative rings [1,3,8] or semigroups [7,15,19]. Recently, there has been a resurgence
of interest in the Morita theory of semigroups [11–14,18]. The current work is part of an attempt (initiated
in [20]) to generalize some of those latest results from semigroups to partially ordered semigroups, and
belongs to a line of research trying to establish generalizations of various results of semigroup theory to
partially ordered semigroups (e.g. [6,16,17], an overview in [5]).

A Morita invariant is a property of (partially ordered) semigroups such that whenever a (po)semigroup
S has it, any other (po)semigroup that is strongly Morita equivalent to S has it as well. A natural part of the
investigation of Morita equivalence is the study of invariants. In the case of semigroups, the pioneering work
of Talwar [19] already considered a number of such properties, e.g. being completely 0-simple or bisimple.
More recently, Lawson [14], Laan [11], and Laan and Márki [12] have examined more invariants by using
both Morita contexts and various new characterizations of Morita equivalence. For example, Lawson [14]
implicitly shows that the property of being regular and locally inverse is a Morita invariant. Laan [11]
does the same for complete simplicity and Laan and Márki [12] prove it for (a)periodic semigroups. We
show that order-related properties are not Morita invariants in general, but some (which include satisfying a
given inequality) may be in special cases. There are also classes of posemigroups for which the greatest
commutative images are always isomorphic, generalizing the result (e.g. from [10]) that commutative
Morita equivalent monoids are isomorphic. Furthermore, under weaker assumptions, the lattices of ideals,
downwards and upwards closed ideals, and convex ideals of strongly Morita equivalent posemigroups are
correspondingly isomorphic, which corresponds to the ring-theoretic result that the ideal lattices of Morita
equivalent rings are isomorphic.

We use the category of partial orders and monotone maps, which will be denoted by Pos. We will
also employ categories and functors enriched over Pos, i.e. categories with morphism posets and monotone
composition, and monotone functors, respectively. For more details on Pos-categories, Pos-functors, and
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Pos-equivalences, the reader is referred to [9], but we remark that a full and faithful Pos-functor must
provide a poset isomorphism instead of a bijection between the corresponding morphism posets.

A partially ordered semigroup S (a posemigroup for short) is a (nonempty) semigroup that is endowed
with a partial order so that its operation is monotone. For a fixed posemigroup S, (one-sided) S-posets are
partially ordered S-acts where the S-action is monotone in both arguments. A left S-poset X is said to be
unitary if SX = X . The notion for right S-posets is dual. A poset is called an (S,T )-biposet if it is a left S-
and a right T -poset and its S- and T -actions commute with each other. An (S,T )-biposet is called unitary
if it is unitary as both a left S- and a right T -poset. Posemigroup homomorphisms are monotone semigroup
homomorphisms. A number of basic facts about S-posets over pomonoids can be found in [5].

The set of idempotents of a semigroup S will be denoted by E(S). A posemigroup S is said to have local
units if for any s ∈ S there exist e ∈ E(S) and f ∈ E(S) such that

es = s = s f .

A posemigroup S is said to have weak local units if for any s ∈ S there exist e ∈ S and f ∈ S such that
es = s = s f . A posemigroup S is said to have common (weak) local units (cf. [12]) if for any s,s′ ∈ S there
exist e ∈ E(S) and f ∈ E(S) (e ∈ S and f ∈ S) such that es = s = s f and es′ = s′ = s′ f . It is said to have
two-sided (common, weak) local units (cf. [12]) if for any s ∈ S (s,s′ ∈ S) there exist e ∈ E(S) (e ∈ S) such
that es = s = se (and es′ = s′ = s′e).

Lemma 1.1. If a posemigroup S has common (two-sided, weak) local units, then any finite subset of S also
has common (two-sided, weak) local units.

Proof. We only need to verify this for a three-element subset {s1,s2,s3} ⊆ S. Take e ∈ S such that es1 = s1
and es2 = s2. Now take f ∈ S so that f e = e and f s3 = s3. Then f s1 = f es1 = es1 = s1 and similarly f s2 = s2,
as required. 2

A posemigroup is called factorizable if S2 = S. Having local units implies having weak local units,
which in turn implies factorizability. Also, a posemigroup with (weak) common local units has (weak) local
units. For any e, f ∈ E(S), we say that the subposemigroup eS f ⊆ S (with the order inherited from S) is a
generalized local subpomonoid of S.

If S is a posemigroup and ρ is a reflexive relation on S, one can define a preorder ≤ρ on S by setting
s≤ρ t if there exist n ∈ N, si, ti ∈ S, 1≤ i≤ n such that

s≤ s1 ρ t1 ≤ s2 ρ t2 ≤ . . .≤ sn ρ tn ≤ t.

A posemigroup congruence on S is a semigroup congruence θ on S such that the closed chains condition
holds:

ifs≤θ t ≤θ s, then sθ t.

The posemigroup congruence generated by a relation H ⊆ S × S (denoted by θ(H)) is the smallest
posemigroup congruence on S that contains H. For a more detailed description, we refer the reader to [5],
but we remark that if H is a semigroup congruence, then θ(H) =≤H ∩ ≥H .

The tensor product A⊗S B of a right S-poset A and a left S-poset B is the quotient poset (A×B)/∼ by
the least poset congruence ∼ for which (as,b)∼ (a,sb) for all a ∈ A, b ∈ B, s ∈ S.

If A is a (T,S)-biposet, then A⊗S B is a left T -poset, where the action is defined by t(a⊗b) = (ta)⊗b.
Similarly, if B is an (S,T )-biposet, then A⊗S B is a right T -poset.

2. STRONG MORITA EQUIVALENCE

If S and T are posemigroups, we say that a 6-tuple

(S,T,P,Q,〈−,−〉, [−,−])
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is a Morita context if the following conditions hold:
(M1) P is an (S,T )-biposet and Q is a (T,S)-biposet;
(M2) 〈−,−〉 : P⊗T Q→ S is an (S,S)-biposet morphism and

[−,−] : Q⊗S P→ T is a (T,T )-biposet morphism;
(M3) the following two conditions hold for all p, p′ ∈ P and q,q′ ∈ Q:

(i) 〈p,q〉p′ = p[q, p′],
(ii) q〈p,q′〉= [q, p]q′.
A Morita context is called unitary if the biposets P and Q are unitary. We say that two posemigroups

S and T are strongly Morita equivalent (a notion introduced for unordered semigroups by Talwar [19]) if
there exists a unitary Morita context (S,T,P,Q,〈−,−〉, [−,−]) such that the mappings 〈−,−〉 and [−,−] are
surjective.

For a small Pos-category C , we will denote by C0 its set of objects and by C (B,A) its poset of morphisms
from object A to object B.

If S is a posemigroup, then the Cauchy completion of S (cf. [14]) is the Pos-category C(S) that has
C(S)0 = E(S), morphism posets

C(S)( f ,e) = {(e,s, f )|s ∈ S,es f = s},

with the order (e,s, f )≤ (e,s′, f ) iff s≤ s′ in S and the composition rule (e,s, f )◦ ( f ,s′,g) = (e,ss′,g).
From Theorem 2.1 of [20], we recall the following description of strong Morita equivalence.

Theorem 2.1. Let S and T be posemigroups with local units. Then the following conditions are equivalent:
(1) S and T are strongly Morita equivalent;
(2) the categories C(S) and C(T ) are Pos-equivalent.

Also, condition (2) provides an important fact on the local structure of strongly Morita equivalent
posemigroups.

Corollary 2.1. If S and T are strongly Morita equivalent posemigroups with local units, then each
generalized local subpomonoid S is isomorphic to a generalized local subpomonoid of T .

3. INVARIANTS OF STRONGLY MORITA EQUIVALENT SEMIGROUPS

In this section we investigate which properties of posemigroups remain invariant under strong Morita
equivalence.

First, we use Theorem 2.1 to derive the following result.

Proposition 3.1. Let S be a posemigroup. Then S is strongly Morita equivalent to a one-element
posemigroup if and only if S is a rectangular poband.

Proof. Let S = U ×V be a rectangular poband, E a one-element posemigroup, and take e = (u1,v1), f =
(u2,v2) ∈ E(S) = S. Then C(S)(e, f ) = {( f ,(u2,v1),e)} and C(S) is a groupoid. It is therefore easy to see
that any mapping C(E)→C(S) is a Pos-equivalence.

Conversely, if a posemigroup S is strongly Morita equivalent to a one-element posemigroup E, then
C(E) and C(S) are Pos-equivalent by Theorem 2.1, implying that C(E) and C(S) are equivalent categories.
Using the unitarity of the Morita context, it is not difficult to show directly that S is a poband and therefore
has local units. Then by Theorem 1.1 of [14], S and E are Morita equivalent as semigroups, so the semigroup
S must be a rectangular band by Theorem 16 of [11]. 2

Due to the above, we can immediately conclude that

Corollary 3.1. The invariants of strong Morita equivalence do not include any purely order-related property
that does not model the entire Pos. Moreover, the congruence lattices of strongly Morita equivalent
posemigroups are not necessarily isomorphic.
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Proof. The one-element posemigroup either satisfies an order-related property or not. By our assumption,
there exists a poset that does not satisfy (or does satisfy, as the case may be) the same property. We turn that
poset into a left zero posemigroup, which is a rectangular band and therefore strongly Morita equivalent to
the one-element posemigroup by Proposition 3.1.

Similarly, the congruence lattice of the one-element posemigroup is singleton, while nontrivial
rectangular bands have at least two congruences. 2

Still, if we assume sufficiently “good” local units, we can prove that some properties are Morita
invariants for such classes of posemigroups. The following use of common local units to establish the
existence of Morita invariants is a very useful technique, and will be used to prove Proposition 3.3 as well.

Proposition 3.2. Let S and T be strongly Morita equivalent posemigroups with common local units. If
the order on S is either total, discrete, directed or a semiorder, then the order on T is also total, discrete,
directed or a semiorder.

Proof. We will prove only the claim about chains, since the others can be proved in the same way. Let S
be a chain and take t, t ′ ∈ T . As T has common local units, there exist i, j ∈ E(T ) such that t = it = t j and
t ′ = it ′ = t ′ j, so t, t ′ ∈ iT j. By Corollary 2.1, iT j∼= eS f for some e, f ∈ E(S). But since S is a chain, eS f and
therefore iT j are also chains. So either t ≤ t ′ or t ′ ≤ t, as required. 2

Theorem 3.1 (cf. Th. 5 of [12]). Let S and T be strongly Morita equivalent posemigroups with common
two-sided weak local units. If S satisfies an inequality, then T also satisfies the same inequality.

Proof. The proof is a minor modification of Theorem 5 of [12]. Let there be two terms w(x1, . . . ,xn) =
xi1 . . .xik and w′(x1, . . . ,xn) = x j1 . . .x jl . Suppose that S satisfies the inequality w≤w′. Take any t1, . . . , tn ∈ T
and fix e = [q, p] ∈ T such that ti = eti = tie for all i = 1, . . . ,n.

Then for all m1, . . . ,ma ∈ {1, . . . ,n} we have

tm1 . . . tma = etm1e . . .etma−1etmae = [q, p][tm1q, p] . . . [tma−1q, p][tmaq, p]

= [q,〈p, tm1q〉 . . .〈p, tma−1q〉〈p, tmaq〉p].

So

w(t1, . . . , tn) = [q,〈p, ti1q〉 . . .〈p, tik−1q〉〈p, tik q〉p]

= [q,w(〈p, t1q〉, . . . ,〈p, tnq〉)p]

≤ [q,w′(〈p, t1q〉, . . . ,〈p, tnq〉)p]

= [q,〈p, t j1q〉 . . .〈p, t jl−1q〉〈p, t jl q〉p] = w′(t1, . . . , tn). 2

There is also an alternative proof under slightly different assumptions.

Proposition 3.3. Let S and T be strongly Morita equivalent posemigroups with common local units. If S
satisfies an inequality, then T also satisfies the same inequality.

Proof. Suppose that S and T are strongly Morita equivalent posemigroups with common local units.
Moreover, let S satisfy an inequality w ≤ w′, where w(x1, . . . ,xn) = xi1 . . .xik and w′(x1, . . . ,xn) = x j1 . . .x jl .
By Corollary 2.1, T satisfies w ≤ w′ locally. Take t1, . . . , tn ∈ T and e, f ∈ E(T ) such that ti = eti f for all
i = 1, . . . ,n. Then ti ∈ eT f and thus

w(t1, . . . , tn)≤w′(t1, . . . , tn). 2

Remark 3.1. Since an identity is equivalent to two inequalities, the above results hold for identities as well.
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Corollary 3.2. Commutativity and being a band or a semilattice are invariant properties of Morita
equivalent posemigroups with common (two-sided weak) local units.

Actually, since idempotence involves an identity with only one variable, we can easily derive the
following version of Theorem 3.1.

Proposition 3.4. Let S and T be strongly Morita equivalent posemigroups with (two-sided weak) local units.
If S is a band, then so is T .

A more in-depth result on commutativity is as follows.

Theorem 3.2 (cf. Th. 4 of [12]). Let S and T be strongly Morita equivalent posemigroups with common
two-sided weak local units. Then their greatest commutative images are isomorphic posemigroups.

Proof. For any posemigroup S, let α1
S be the binary relation

α1
S = {(cabd,cbad)|a,b ∈ S,c,d ∈ S1} ⊆ S×S

and let αS =≤α1
S
∩ ≥α1

S
. Then αS is a posemigroup congruence and S/αS is the greatest commutative

image of S. Let πS : S → S/αS be the canonical projection. Now, suppose that S and T are strongly Morita
equivalent posemigroups with common two-sided weak local units. Define two mappings f : S/αS → T/αT
and g : T/αT → S/αS by

f (πS(s)) = πT ([q,sp]), where s = us = su and u = 〈p,q〉,
g(πT (t)) = πS(〈p, tq〉), where t = vt = tv and v = [q, p].

We will show that f is a posemigroup homomorphism. Then g will also be a homomorphism by
symmetry. First, we check that the choice of u does not influence the definition of f . For this suppose that
s = us = su = u′s = su′ for u = 〈p,q〉 and u′ = 〈p′,q′〉. Then su = su′ = us yields 〈sp,q〉= 〈sp′,q′〉= 〈p,qs〉.
Therefore

[q,sp] = [q,su′p] = [q,〈sp′,q′〉p] = [q,sp′][q′, p]

αT [q′, p][q,sp′] = [q′,〈p,q〉sp′] = [q′,usp′] = [q′,sp′]

and thus πT ([q,sp]) = πT ([q′,sp′]), as required.
Moreover, take (s,s′) = (cabd,cbad) ∈ α1

S . We only consider the case where c,d ∈ S, the others can
be proved in a similar way. So let u = 〈p,q〉 ∈ S be such that a = ua = au, b = ub = bu, c = uc = cu, and
d = ud = du. Then

f (πS(s)) = πT ([q,cabd p]) = πT ([q,cuaubud p])

= πT ([q,c〈p,q〉〈ap,q〉〈bp,q〉d p])

= πT ([q,cp][qa, p][qb, p][qd, p])

= πT ([q,cp][qb, p][qa, p][qd, p])

= πT ([q,c〈p,q〉〈bp,q〉〈ap,q〉d p])

= πT ([q,cubuaud p]) = πT ([q,cbad p]) = f (πS(s′)).

Additionally, if s ≤ s′, we can again take u = 〈p,q〉 ∈ S such that s = su = us and s′ = s′u = us′ and get
f (πS(s)) = πT ([q,sp])≤ πT ([q,s′p]) = f (πS(s′)).

To verify that f is monotone, we need to show that if s ≤α1
S

s′, then f (πS(s)) ≤ f (πS(s′)). Let n ∈ N,
si, ti ∈ S, 1≤ i≤ n be such that s≤ s1 α1

S t1 ≤ s2 α1
S t2 ≤ . . .≤ sn α1

S tn ≤ s′. By the above,

f (πS(s)) ≤ f (πS(s1)) = f (πS(t1))≤ f (πS(s2)) = f (πS(t2))

≤ . . .≤ f (πS(sn)) = f (πS(tn))≤ f (πS(s′)).
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So f is monotone and consequently well-defined.
To see that f is a homomorphism, take s,s′ ∈ S and let u = 〈p,q〉 ∈ S be such that s = su = us and

s′ = s′u = us′. Then ss′ = uss′ = ss′u and

f (πS(ss′)) = πT ([q,ss′p]) = πT ([q,sus′p]) = πT ([q,s〈p,q〉s′p])
= πT ([q,sp[q,s′p]]) = πT ([q,sp][q,s′p])
= πT ([q,sp])πT ([q,s′p]) = f (πS(s)) f (πS(s′)).

Finally, take s ∈ S and u = 〈p,q〉 ∈ S such that s = su = us. Then

[q,sp] = [q,sup] = [q,s〈p,q〉p] = [q,sp][q, p],

similarly [q,sp] = [q, p][q,sp] and therefore

(g f )(πS(s)) = g(πT ([q,sp])) = πS(〈p, [q,sp]q〉)
= πS(〈p,q〉〈sp,q〉) = πS(usu) = πS(s).

So g f = 1S/αS and similarly f g = 1T/αT . 2

Corollary 3.3 (cf. Cor. 1 of [12], Cor. 6.2 of [10]). Let S and T be two strongly Morita equivalent
commutative semigroups with common two-sided weak local units. Then S and T are isomorphic.

4. IDEAL LATTICES

We now proceed to show that the lattices of various kinds of ideals of strongly Morita equivalent
posemigroups are isomorphic. This allows us to make several further observations on strong Morita
equivalence. Note that we allow empty ideals so that the posets of ideals are proper lattices.

By ↓I, ↑I, and Conv(I) we will denote the down-set, up-set, and convex poset generated by a fixed
subposet I ⊆ S, i.e.,

↓I = {x ∈ S|∃y ∈ I such that x≤ y},
↑I = {x ∈ S|∃y ∈ I such that y≤ x},

Conv(I) = {x ∈ S|∃y,z ∈ I such that y≤ x≤ z}.
We will use the notation Id(S), DId(S), UId(S), and CId(S) for the lattices of (two-sided) ideals, downwards
closed ideals, upwards closed ideals, and convex ideals of S. The lattice operations on the ideal posets with
respect to inclusion are the usual intersection and union operations, except for convex ideals where the join
of two convex ideals is the convex ideal generated by their union.

Assume that there is a Morita context (S,T,P,Q,〈−,−〉, [−,−]) with posemigroups S and T . We can
define the following mappings

Φ : Id(S)→ Id(T ), Θ : Id(T )→ Id(S),

Φ↓ : DId(S)→ DId(T ), Φ↑ : UId(S)→ UId(T ), Φl : CId(S)→ CId(T ),

Θ↓ : DId(T )→ DId(S), Θ↑ : UId(T )→ UId(S), Θl : CId(T )→ CId(S)

by
Φ(I) = [QI,P] = {[qi, p]| p ∈ P,q ∈ Q, i ∈ I},

Θ(J) = 〈PJ,Q〉= {〈p j,q〉| p ∈ P,q ∈ Q, j ∈ J},
Φ↓(I) =↓[QI,P], Φ↑(I) =↑[QI,P], Φl(I) = Conv[QI,P],

Θ↓(I) =↓〈PJ,Q〉, Θ↑(I) =↑〈PJ,Q〉, Θl(I) = Conv〈PJ,Q〉.
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Lemma 4.1. Let (S,T,P,Q,〈−,−〉, [−,−]) be a Morita context with surjective mappings. Then

Conv〈PConvX ,Q〉= Conv〈PX ,Q〉,
↓〈P ↓X ,Q〉=↓〈PX ,Q〉, ↑〈P ↑X ,Q〉=↑〈PX ,Q〉,
Conv[QConvY,P] = Conv[QY,P],

↓[Q ↓Y,P] =↓[QY,P], and ↑[Q ↑Y,P] =↑[QY,P]

for any subsets X ⊆ T , Y ⊆ S.

Proof. We will only prove the first equality. Take x ∈ Conv〈PConvX ,Q〉, i.e. 〈py,q〉 ≤ x ≤ 〈p′z,q′〉 and
y1 ≤ y≤ y2, z1 ≤ z≤ z2 for some p, p′ ∈ P, q,q′ ∈Q, y,z∈ T , y1,y2,z1,z2 ∈ X . Then 〈py1,q〉 ≤ x≤ 〈p′z2,q′〉,
i.e. x ∈ Conv〈PX ,Q〉. The converse is obvious since X ⊆ ConvX . 2

The following theorem is a direct generalization of Theorem 3 of [12], which in turn ultimately arises
from a similar ring-theoretic result (e.g. Proposition 21.11 of [2]).

Theorem 4.1. Let S and T be strongly Morita equivalent posemigroups with weak local units. Then
(1) Φ : Id(S)→ Id(T ) is a lattice isomorphism that takes finitely generated ideals to finitely generated ideals

and principal ideals to principal ideals;
(2) Φ↓ : DId(S)→DId(T ) is a lattice isomorphism that takes down-sets of finitely generated ideals to down-

sets of finitely generated ideals and down-sets of principal ideals to down-sets of principal ideals;
(3) Φ↑ : UId(S)→ UId(T ) is a lattice isomorphism that takes up-sets of finitely generated ideals to up-sets

of finitely generated ideals and up-sets of principal ideals to up-sets of principal ideals;
(4) Φl : CId(S)→ CId(T ) is a lattice isomorphism that takes convex subsets generated by finitely generated

ideals to convex subsets generated by finitely generated ideals and convex subsets generated by principal
ideals to convex subsets generated by principal ideals.

Proof. (1) This can be proved in exactly the same way as Theorem 3 of [12]. The proofs of (2)–(4) are in
fact extensions of that proof.

(2) First, DId(S) and DId(T ) are indeed sublattices of Id(S) and Id(T ), respectively, since intersections
and unions of down-sets are again down-sets. Second, the mappings Φ and Θ clearly preserve subset
inclusion, i.e. are monotone. Moreover, take I ∈ DId(S), x ∈ Φ↓(I), and t, t ′ ∈ T . Because x ≤ [qi, p] for
some p ∈ P, q ∈ Q, i ∈ I, we also have txt ′ ≤ t[qi, p]t ′ = [(tq)i, pt ′], so txt ′ ∈↓[QI,P] = Φ↓(I). Therefore
Φ↓(I) ∈ DId(T ). By Lemma 4.1, we get for any I ∈ DId(S) that

Θ↓(Φ↓(I)) = ↓〈P ↓[QI,P],Q〉=↓〈P[QI,P],Q〉
= ↓〈〈P,QI〉P,Q〉=↓(〈P,Q〉I〈P,Q〉) =↓(SIS) =↓I = I.

Symmetrically Φ↓(Θ↓(J)) = J for all J ∈ DId(T ) and thus Θ↓ is also a lattice isomorphism.
Fix a finitely generated ideal I =

⋃n
i=1 SsiS ∈ Id(S). Then ↓I ∈ DId(S), so we can consider Φ↓(↓I).

Take any s ∈ I. Since 〈−,−〉 is surjective, there exist i ∈ {1, . . . ,n} and p, p′ ∈ P, q,q′ ∈ Q such that
s = 〈p,q〉si〈p′,q′〉. Because S has weak local units, we can put si = 〈pi,qi〉si〈p′i,q′i〉 for some pi, p′i ∈ P,
qi,q′i ∈ Q. So s = 〈p,q〉〈pi,qi〉si〈p′i,q′i〉〈p′,q′〉. Thus we get for any p′′ ∈ P, q′′ ∈ Q and x ≤ [q′′y, p′′], y ∈↓s
that

x≤ [q′′s, p′′] = [q′′, p][q, pi][qisi, p′i][q
′
i, p′][q′, p′′],

so

x ∈↓(T [qisi, p′i]T ), i.e. ↓[Q ↓I,P]⊆
n⋃

j=1

↓(T [q js j, p′j]T ).
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And if y≤ t[q js j, p′j]t
′, then y≤ [(tq j)s j, p′jt

′] ∈ [Q ↓I,P], so y ∈↓[Q ↓I,P] = Φ(↓I), whence

Φ(↓
n⋃

i=1

SsiS) =
n⋃

j=1

↓(T [q js j, p′j]T ) =↓
n⋃

j=1

(T [q js j, p′j]T ).

(3) Dual to (2).
(4) CId(S) and CId(T ) are lattices, but not necessarily sublattices of Id(S) and Id(T ). The mappings

Θl and Φl are again monotone and yield two-sided ideals. Once more, Θl is a poset isomorphism, because
Lemma 4.1 implies for any I ∈ CId(S) that

Θl(Φl(I)) = Conv〈PConv[QI,P],Q〉= Conv〈P[QI,P],Q〉
= Conv〈〈P,QI〉P,Q〉= Conv(〈P,Q〉I〈P,Q〉)
= Conv(SIS) = Conv(I) = I

and likewise Φl(Θl(J)) = J for all J ∈ CId(T ).
Take I =

⋃n
i=1 SsiS ∈ Id(S). Clearly Conv(I) ∈ CId(S), so we can consider Φl(Conv(I)). Fix

any x ∈ Φl(Conv(I)). Then [qs, p] ≤ x ≤ [q′s′, p′] for some s,s′ ∈ Conv(I). We can again write s ≥
〈p1,q1〉〈pi1 ,qi1〉si1〈p′i1 ,q′i1〉〈p′1,q′1〉 and s′ ≤ 〈p2,q2〉〈pi2 ,qi2〉si2〈p′i2 ,q′i2〉〈p′2,q′2〉. Thus

[q, p1][q1, pi1 ][qi1si1 , p′i1 ][q
′
i1 , p′1][q

′
1, p]≤ x,

x≤ [q′, p2][q2, pi2 ][qi2si2 , p′i2 ][q
′
i2 , p′2][q

′
2, p′],

implying that

x ∈ Conv
(
T [qi1si1 , p′i1 ]T ∪T [qi2si2 , p′i2 ]T

)⊆ Conv
n⋃

j=1

T [q js j, p′j]T.

Finally, if t1[q j1s j1 , p′j1 ]t
′
1 ≤ y≤ t2[q j2s j2 , p′j2 ]t

′
2, then

[(t1q j1)s j1 , p′j1t
′]≤ y≤ [(t2q j2)s j2 , p′j2t

′],

i.e. y ∈ Conv[QI,P]⊆ Conv[QConv(I),P] = Φl(Conv(I)), whence

Φl

(
Conv

(
n⋃

i=1

SsiS

))
= Conv

n⋃

j=1

(T [q js j, p′j]T ). 2

Every commutative band (semilattice) has a compatible natural order ω defined by aωb⇔ ab = a. Yet,
there can be other compatible partial orders on that semilattice as well. We call a commutative band with
any kind of partial order compatible with its multiplication a posemilattice.

Proposition 4.1. Two posemilattices that have common weak local units are strongly Morita equivalent if
and only if they are isomorphic.

Proof. Sufficiency is obvious. Let
(S,T,P,Q,〈−,−〉, [−,−])

be a Morita context. Define an additional order¹ on PrId(S), the poset of principal ideals of S, by SsS¹ StS
iff s≤ t. Since S is a semilattice, every principal ideal SsS has a unique generator s ∈ S, so this order is well
defined. We consider the posemilattices (S, ·,≤) and (PrId,∩,¹). First, S ∼= PrId(S) as semigroups. To see
this, we observe that SsS∩ StS = SstS for all s, t ∈ S. Obviously SsS∩ StS ⊇ SstS. For the converse, take
z = s1ss2 = t1tt2 ∈ SsS∩ StS for some s1,s2, t1, t2 ∈ S. Then z = z2 = (s1ss2)(t1tt2) = s1(st)(s2t1t2) ∈ SstS,
because S is a commutative band. From our definition it is clear that now (S, ·,≤) ∼= (PrId,∩,¹) as
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posemigroups. The lattice isomorphism Φ from Theorem 4.1 is a posemigroup isomorphism between the
posets of principal ideals. To conclude the proof, it now suffices to show that Φ preserves and reflects
the above order ¹ on PrId(S) and PrId(T ). We do this via generators, so take s,s′ ∈ S and fix e, f ∈ S
such that es = es′ and s f = s′ f . Since we have surjective [−,−], there exist p, p′ ∈ P and q,q′ ∈ Q such
that s = 〈p,q〉s〈p′,q′〉 and s′ = 〈p,q〉s′〈p′,q′〉. If s ≤ s′, then clearly [qs, p′] ≤ [qs′, p′]. Conversely, if
[qs, p′]≤ [qs′, p′], then

s = 〈p,q〉s〈p′,q′〉= 〈p, [qs, p′]q′〉 ≤ 〈p, [qs′, p′]q′〉= 〈p,q〉s′〈p′,q′〉= s′. 2

A polattice or directed posemilattice means a (lower) posemilattice where the natural order ω is a lattice
order or (upwards) directed order.

The preceding result can thus be reformulated as

Corollary 4.1. Two directed posemilattices are strongly Morita equivalent if and only if they are isomorphic.

Corollary 4.2. Two polattices are strongly Morita equivalent if and only if they are isomorphic.

The next claim holds for unordered semigroups (see Proposition 15 of [11]), but is an open question for
posemigroups.

Conjecture 4.1. Two posemilattices with weak local units are strongly Morita equivalent if and only if they
are isomorphic.

5. CONCLUSION

We established that order-related properties are not Morita invariants for general posemigroups, but at
least a few simpler ones are for those posemigroups that have common local units (or common two-sided
weak local units). Those invariants are being a chain, antichain, directed poset, semiorder and satisfying
a given inequality. We also proved that some Morita invariants of semigroups are also Morita invariants
of posemigroups, namely the greatest commutative images and the lattice of ideals. The latter result was
expanded to include lattices of various order-related ideals. One point of interest for further work is to prove
or refute Conjecture 4.1, which could possibly lead to better techniques for handling order-related properties
via Morita contexts. A more general direction is to see what other kinds of order-theoretic properties (some
immediate candidates include lattices or relatively complemented lattices) are Morita invariants under some
(possibly stronger) conditions.
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Lokaalsete ühikutega osaliselt järjestatud poolrühmade Morita invariandid

Lauri Tart

On uuritud, millised omadused on erinevate lokaalsete ühikutega osaliselt järjestatud poolrühmade jaoks
Morita invariandid, st kanduvad üle antud osaliselt järjestatud poolrühmaga tugevalt Morita ekvivalentsetele
osaliselt järjestatud poolrühmadele. Osutub, et puhtalt järjestusega seotud omadused ei ole üldiselt
invariandid, aga kui eeldada ühiste lokaalsete ühikute olemasolu, siis mõned lihtsamad omadused (ahelaks
olek, suunatus) siiski säilivad. On näidatud, et teatud liiki lokaalsete ühikute olemasolu korral on tugevalt
Morita ekvivalentsete osaliselt järjestatud poolrühmade suurimad kommutatiivsed kujutised isomorfsed,
need rahuldavad samu võrdusi ja võrratusi ning nende (alla- või ülespoole kinniste, kumerate) ideaalide
võred on isomorfsed. On järeldatud, et vastavate ühikute olemasolul on tugevalt Morita ekvivalentsed
kommutatiivsed osaliselt järjestatud poolrühmad või osaliselt järjestatud poolvõred isomorfsed.


