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Abstract. In this paper we investigate (€,8)-trans-Sasakian manifolds which generalize the notion of (&)-Sasakian and
(¢)-Kenmotsu manifolds. We prove the existence of such a structure by an example and we consider ¢-recurrent, pseudo-
projectively flat and pseudo-projective semi-symmetric (€, §)-trans-Sasakian manifolds.
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1. INTRODUCTION

The study of manifolds with indefinite metrics is of interest from the standpoint of physics and relativity.
Manifolds with indefinite metrics have been studied by several authors. In 1993, Bejancu and Duggal [1]
introduced the concept of (€)-Sasakian manifolds and Xufeng and Xiaoli [6] established that these manifolds
are real hypersurfaces of indefinite Kahlerian manifolds. Kumar et al. [4] studied the curvature conditions
of these manifolds. Tripathi et al. [5] introduced and studied (€)-almost para contact manifolds. Recently
De and Sarkar [3] introduced (€)-Kenmotsu manifolds and studied conformally flat, Weyl semisymmetric,
¢-recurrent (€)-Kenmotsu manifolds. The existence of a new structure on indefinite metrics influences the
curvature. Motivated by the above studies, in this paper we introduce the concept of (g, §)-trans-Sasakian
manifolds which generalizes the notion of (€)-Sasakian as well as (€)-Kenmotsu manifolds.

The paper is organized as follows. Section 2 covers some preliminary facts on (€, )-trans-Sasakian
structures. In Section 3, we give an example of such a structure and present some basic results. Also an
explicit formula for the curvature tensor and Ricci tensors are obtained. Section 4 is devoted to ¢-recurrent
(g, 0)-trans-Sasakian manifolds. In Section 5, we consider pseudo-projectively flat (g, §)-trans-Sasakian
manifolds and prove that these manifolds are Einstein. In the last section, we consider (€, 0 )-trans-Sasakian
manifolds with the condition R.P = 0 and prove that these manifolds are pseudo-projectively flat.

2. PRELIMINARIES

Let M be an almost contact metric manifold of dimension n equipped with an almost contact metric structure
(¢,&,7m,g) consisting of a (1, 1) tensor field @, a vector field &, a 1-form 7, and a Riemannian metric g
satisfying

0> =—-I+nQE, (2.1)

* Corresponding author, hgnraj@yahoo.com



H. G. Nagaraja et al.: On an (€,0)-trans-Sasakian structure 21

neé) =1, (2.2)
9E=0,n0¢0=0. (2.3)

An almost contact metric manifold M is called an (€)-almost contact metric manifold if

g(&,8) =¢, (2.4)
n(X):gg(X7‘§)a (2.5)
g(0X,0Y) =g(X,Y)—en(X)n(Y), VX,Y € TM, (2.6)

where € = g(£,&) = +1.
An (€)-almost contact metric manifold is called an (g, 0)-trans-Sasakian manifold if

(Vx9)Y = a(g(X,Y)5 —en(Y)X) + B(g(¢X,Y)E — 61 (Y)9X) 2.7

holds for some smooth functions & and f on M and € = +1, § =+ 1. For B =0, o = 1, an (g, J)-trans-
Sasakian manifold reduces to an (€)-Sasakian and for & = 0, = 1 it reduces to a (§)-Kenmotsu manifold.

3. (¢,6)-TRANS-SASAKIAN MANIFOLDS

Let M be an n-dimensional (&, §)-trans-Sasakian manifold. Taking ¥ = & in (2.7) and making use of (2.3),
(2.4), and (2.5), we obtain

¢(Vxs) =ea(X —n(X)§)+6B9X.
Applying ¢ on both sides, we have from (2.1) and (2.3)

Vxé = —eapX — BSo°X. (3.1)
Conversely, suppose that (3.1) holds. Since Vx(n A ¢) = 0, we have

(Vxm)(Y)@(Z,W)+n(Y)(VxP)(Z,W)
+(Vxm)(Z)2(W,Y) +1(Z)(VxP)(W,Y)
+(Vxn)(W)D(Y,2) +n(W)(VxP)(Y,Z) =0, (3.2)

where ®(X,Y) = g(¢X,Y). Taking W = & in (3.2), we obtain
(Vx¢)(Y) = eg(¢(Vx§),Y)E —n(Y)o(Vx&). (3.3)
Using (3.1) in (3.3), we have (2.7), provided €5 = 1. Thus we have
Lemma 3.1. An €-almost contact metric manifold M is an (&, 8)-trans-Sasakian manifold if and only if
Vxé = —eapX — BSo*X (3.4)
holds in M.

From (3.4) it follows that

(Vxm)Y = 6B (eg(X,Y) —n(X)n(Y)) — ag(¢X,Y). (3.5)
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Example. Let (x,y,7) be Cartesian coordinates in R? and let

x 0 y o0 0
= - — =< — =—(e+0)=.
€] z xa € z aya (] ( + )aZ
Then ey, e;, e3 are linearly independent at each point of M. We define
_5 —1 00
E=es, N=—-dz, o= 0 —1 0 | andg=(dx)*+(dy)*+e(d2)".
2 0 00

Then the (¢,&,M,g) structure is an (€)-almost contact metric structure in R3.
Further from Koszul’s formula

2g(VXY,Z) :Xg(Y7Z>+Yg(ZvX)_Zg(va)_g(X7[Y7Z]) _g(Y> [sz])_‘_g(za [X7Y])
we have

(e +9)
Z

(e +9)

Ve|€3:— el, Ve]€3:— e, Ve]e3:0.

Using the above relations, for any vector field X on M we have Vx& = —ea¢X — BS¢*X, where a = 1/z
and B = —1/z. Hence the (¢, &, n,g) structure defines the (&, §)-trans-Sasakian structure in R>.

Lemma 3.2. In an (€, 0)-trans-Sasakian manifold M, the curvature R satisfies
R(X,Y)E =e((Ya)9X — (Xa)9Y) + (B> — o®)(n(X)Y —n(Y)X)
—8((XB)¢*Y — (YB)$*X) +25eaB(n(Y)9X —1(X)9Y)
+2aB(6—¢€)g(9X,Y)E. (3.6)
Consequently
R(E.X)Y =¢[(grada)g(9Y,X) + (Y &)X + (a® — B*)[g (Y, X)& — n(¥)X]
+8[(gradB)g(9°Y,X) — (Y B)9°X] +2e8aB[g(4Y,X)& +n(Y)9X]
+2(0—€)apg(X,&)oY (3.7
¥ vector fields X and Y on M.

Proof. By definition
R(X,Y)E =VxVyE —VyVx& —Vix y&.

Using (3.1), the above equation becomes
R(X,Y)& =Vx(—eagY —8B9’Y) —Vy(—eagX — 5p¢°X)
— (—eag[X,Y] - 5B9*[X,Y)).

Using (2.7), the above relation yields (3.6).
From (3.6) and g(R(&,X)Y,Z) = g(R(Y,Z)E,X), we obtain (3.7). O

We note that for constants o and f3,

R(X,Y)E = (B> —a®)(n(X)Y —n(Y)X). (3.8)
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Lemma 3.3. In an (g, 0)-trans-Sasakian manifold, we have

R(X,Y)9Z =0R(X.Y)Z+ (Xa)(g(¥.2)& — en(2)Y) — (Y ) (g(X,Z)E — en(2)X)
—e(a? — B)(5(Y,2)9X — g(X,Z)0Y) + 2aB 3 (g(Y,Z)X — g(X,Z)Y)
+aB(8—€)(g(X.Z)n(Y)E — g(¥.2)n (X))
+(XB)(g(0Y,2)& — S0(2)8Y) + (Y B) (8(9X. Z)E — 81(2)9 (X))
2B (e — 8)g(0X.Y)N(2)E + a (e +8) (g(9X, Z)9Y — g(9Y.Z)9X)

23

+(ea® — 5B?)(g(¢X,Z)Y — g(¢Y,Z)X). (3.9)

Consequently,
N(R(X,Y)Z) =20B (8 — €)g(9X,Y)N(Z) — (Xa)g(Y,92)
+(Y)g(X,90Z) —af (5 +€)(g(Y,0Z)n(X)
—8(X,9Z)n(Y)) — (e’ = 8B*)(¢(X. Z)n(¥) — g(¥,Z)n (X))

—(XB)(8(Y,2) —en(Y)n(2)) + (Y B)(s(X,Z) —en(X)n(2)). (3.10)

Proof. By definition,
R(X,Y)9Z=VxVy9Z—VyVx0Z —Vx y0Z.

Using (2.7) in the above equation, we have

R(X.Y)0Z =Vx(9(VyZ)+ a(g(Y,Z)E —en(2)Y) + B (g(¢Y,2)E — 6n(Z)9Y))
+Vr(¢(VxZ) + a(g(X,2)E —en(2)X) + B(s(9X,Z)E — 61(Z)9X))

—(0(VixyZ) + a(g([X, Y], 2)E —en(Z)[X,Y]) + B(g(¢[X, Y], Z)G — 6n(2)9[X,Y])).

Again using (2.7) and in view of

VXg(sz) = g(VXYaZ) _g(Y)VXZ)a

we obtain (3.9).
Replacing Z by ¢Z in (3.9) and making use of (2.1), we obtain

—R(X,Y)Z+n(Z)R(X,Y)§ =9R(X,Y)$Z+ (X)g(Y,9Z)E — (Y)g(X,$Z)G
+e(a’ —B*)(g(X,902)9Y —g(Y,0Z)X)
+(ea® — 8B%)(8(¢X.92)Y —g(9Y,9Z)X)
+af(5—e)(g(X,0Z)n(Y) —g(Y,0Z)n(X))&
+aB(e+0)(g(¢X,9Z)9Y —g(9Y,9Z)9X)
+2aBd(g(Y,92)X —g(X,02)Y)
+(XB)g(9Y,0Z)c — (YB)g(9X,9Z)s.

Contracting the above with & and using (2.4) and (2.5), we obtain (3.10).
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Lemma 3.4. In an (€, 8)-trans-Sasakian manifold the following relations hold.

S(X,&) = —(9X)a+((n—1)(ea® = B>8) — (§B))N(X) — (n—2)(XB) (3.11)
and

Ea+28apf =0. (3.12)

Proof. Taking Y = Z = ¢; in (3.10) and using (2.3), we obtain (3.11).
Taking X = & in (3.6) and using (2.3), we have

R(E.X)E=—¢e(Ea)pX + (B*— o?)(X —n(X)E) — 8(EB)9*X —2e5afpX
=—e(Ea+28aB)pX — ((B*—a®)+8(EP))P°X. (3.13)

Taking Y = & in (3.7), we obtain

R(EX)E =€e(Ea)pX + (B> — o) (X —n(X)E) — S(EP)P°X +2e5af X
=e(Ea+28aB)9X + ((a® —B*) - 5(£B))9°X. (3.14)

Comparing (3.13) and (3.14), we obtain (3.12). Il

4. 9-RECURRENT (¢,0)-TRANS-SASAKIAN MANIFOLDS

Let M be an (g, §)-trans-Sasakian manifold. Then M is said to be a ¢-recurrent manifold if there exists a
nonzero 1-form A such that
0’ ((VwR)(X,Y)Z) = A(W)R(X,Y)Z (4.1)

for arbitrary vector fields X,Y,Z, W on M. If the 1-form vanishes identically, then the manifold will be called
a ¢-symmetric manifold.
Suppose that the (&, §)-trans-Sasakian manifold under consideration is ¢-recurrent. Then from (4.1)
and (2.1), we obtain
(VWR)(X.Y)Z = n((VwR)(X.Y)Z)E — A(W)R(X,Y)Z. (4.2)

By the above relation, Bianchi’s identity yields
AWIN(R(X,Y)Z)+AX)N(R(Y,W)Z) +A(Y)n(R(W,X)Z) = 0. (4.3)

Taking Y = Z = ¢; in the above equation, where (¢;) is an orthogonal basis of the tangent space at each point
of the manifold and using (3.10) in (4.3), we obtain

AW)n(X) =AX)n(W). (4.4)
For X = &, this equation yields
AW) =A(S)n(W). (4.5)
Now
(VwR)(X,Y)E = VR(X, V) — R(VwX,¥)E —R(X,Vig¥)E — R(X,Y)VyE. (4.6)

If o and B are constants, then from (2.6) and (3.8) in (4.6), we obtain

(VwR)(X,Y)E =(B? — o) (Vwm)X)Y — ((Vwn)Y)X
— (—€QR(X,Y)W + BSR(X,Y)W — BSN(W)R(X,Y)E). 4.7)
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If we consider X, Y orthogonal to &, then in view of (3.8), we have n((VwR)(X,Y)&) = 0.
Hence

N((VewR)(X,Y)E) = 0. (4.8)
From (4.7), we obtain
(VowR)(X,Y)& =(B* — &) (Vown)X.Y — (Vown)Y.X)
— (—806R(X,Y)¢2W + BOR(X,Y)0W — BON(¢W)R(X,Y)E). 4.9

Suppose that the manifold is ¢-recurrent. Then using (4.2), we obtain from the above equation

—N((VowR)(X,Y)E) +A(@W)R(X,Y)&
= (B? — a?)(8Beg(9W.X) + ag(W,X))Y — (B> — a?)(8Beg(¢W.Y) + ag(W.Y))X  (4.10)

0= (B> —a’){5Be[g(¢W.X)Y — g(¢W,Y)X] + ax[g(W,X)Y —g(W,Y)X]}, (4.11)

ie.
eaR(X, Y)W + (B> — a?)(g(Y,W)X — g(W,X)Y)
= BS[~R(X,Y)9W +e(B> —a?)(g(W.,X)Y —g(¢W,Y)X))]. (4.12)
If oo = 0 and B # 0, then we have
R(X,Y)oW = eB*(g(9W,X)Y — g(9W,Y)X). (4.13)

Change W to ¢ W to get
R(X,Y)W = —B2(g(Y. W)X —g(X, W)Y), (4.14)

i.e. the manifold M reduces to a f-Kenmotsu manifold of constant curvature. If B = 0 and o # 0, then we
obtain
RX,Y)W = ea?(g(Y,W)X —g(W,X)Y), (4.15)

1.e. the manifold M reduces to an a-Sasakian manifold of constant curvature. Thus we can state that

Theorem 4.1. For constants o and B, an (€,0)-trans-Sasakian @-recurrent manifold reduces to a
B-Kenmotsu manifold of constant curvature for o« = 0 (respectively an a-Sasakian manifold of constant
curvature for B = 0).

5. PSEUDO-PROJECTIVELY FLAT (¢,)-TRANS-SASAKIAN MANIFOLDS

Let M be an (g, 0)-trans-Sasakian manifold. The pseudo-projective curvature tensor in M is given by [2]

P(X,Y)Z =aR(X,Y)Z+b[S(Y,Z)X — S(X,Z)Y]

n\n—1

! ( 7 4 b) (Y, 2)X — g(X,Z)Y], (5.1)

where R and S are respectively Riemann and Ricci curvature tensors. Suppose P = 0, then from (5.1) we
have

R(X,Y)Z = S(S(Y, Z)X —S(X,Z)Y) — é <n . o+ b> (g(Y,2)X —g(X,2)Y). (5.2)
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From (5.2) we have

'R(X,Y,Z,W) zg(S(Y,Z)g(X,W) —S8(X,Z)g(Y,W))

_r ( a_ L b> (8(Y,Z)g(X, W) — g(X,Z)g(Y,W)), (5.3)

an \n—1

where 'R(X,Y,Z,W) = g(R(X,Y)Z,W).
Putting W = & in (5.3), we obtain

M(R(X,Y)Z) = (S, 2)n(X) — S(X, Z)n(¥)

“an <nf1 + b) e(g(r:Zn(X) - (X, Z)n(r)). (5.4)

Again taking X = & in (5.4) and using (3.6) and (3.11), we obtain

S(Y,2) :g [8(052—[32) + é <ni1+ b)} g(Y.2)

b

a
a

b

1
[+ n—1

(=B (n—1)+ Ea’;a( = +b)] nZ)n(y).

Therefore the manifold M is n-Einstein.

6. (¢,5)-TRANS-SASAKIAN MANIFOLDS SATISFYING R(X,Y).P =0

Let M be an n-dimensional (€, 6 )-trans-Sasakian manifold. Using (2.1), (2.2), (2.4), (2.5), and (2.6) in (3.4),
we obtain

N(P(X.Y)Z) =a(a’® —B?)[n(X)g(Y,Z) = n(Y)g(X,2)] +bIS(Y,Z)n(X) = S(X,Z)n(Y)]

(5 ) k2 - X 2n ()] 6.1

n\n—1

Putting Z = £ in (6.1), we obtain B
n(P(X,Y)&) =0. (6.2)

Again taking X = & in (6.1) and using (2.5), (2.6), and (3.11), we have

NPEYIZ) = [aela =)+ - (2 o) | elor.02) 1150 2) - (@ - Brn @) 63

Suppose R(X,Y).P = 0. Then we have
R(X,Y)P(U,V)Z—P(R(X,Y)U,V)Z—P(U,R(X,Y)V)Z—P(U,V)R(X,Y)Z =0. (6.4)

Contracting (6.4) with respect to & and taking X = &, we obtain

g(R(é,Y)P(U,V)Z,é) _g<F(R(§7Y)U7V)ng)
_g<F(U7R(67Y)V)ng) —g(F(U,V)R(g,Y)Z, 6) =0. (6.5)



H. G. Nagaraja et al.: On an (€,0)-trans-Sasakian structure 27

From this it follows that

(a? = B*)P(UV,Z,Y) — (o’ = B2 (Y)n(P(U,V)Z)
— (o = B?)g(U,Y)N(P(§,V)Z) +e(o® — B*)n(U)n (P(Y,V)Z)
— (o = B?)g(V.Y)n(P(U,&)Z) +e(a® — B*)n(VIn(P(U,Y)Z)
—(0® = B)g(2,Y)n(P(U,V)E) +e(a® — B*)n(Z)n(P(U,V)Y) =0, (6.6)

where 'P(U,V,Z,Y) = g(P(U,V)Z,Y).
Putting Y = U in (6.6), we obtain

/F(Uv V.Z, U) - g(U7 U)’? (F(é ) V)Z) - g(V7 U)n (F(U7 S)Z)
+en(V)n(P(U,U)Z) - g(Z,Y)n(PU,V)E) +en(Z)n(PUV)U) =0.  (67)

Let {e;},i=1,2,...,n be an orthonormal basis of the tangent space at any point. Then the sum for 1 <i<n
of the relation (6.7) for U = ¢; yields

(n— 1N (P(E,V)Z) =(a+(n—D)b)S(V.Z) — (a-+ (n—1)b)g(V.Z)

+e(e(n—1)(e? = ) (b—a) — - (b—a)n (V)0 (2). (6:8)
From (6.3) and (6.8), we have
S(V.Z) =e(n—1)(a® = B*)g(V.Z) — ((n—1) (e —Bz)n—er)gn(v)n(Z) (6.9)

Taking Z = & in (6.9) and using (3.11), we obtain
r=en(n—1)(a® - p?). (6.10)
Now using (6.1), (6.2), (6.9), and (6.10) in (6.6), we obtain
'P(U,V,Z,Y) =0. 6.11)

From (6.11), it follows that
F(U ,\V)Z=0.
Thus we have

Theorem 6.2. An (&,8)-trans-Sasakian manifold with R.P = 0 is projectively flat.

From the pseudo-projective curvature tensor as given in (5.1), a symmetric tensor of type (0,2) can be
defined as follows:
RicP(X,Y)='P(X, e;,e;,Y), (6.12)

where 'P(X,Y,Z,U) = g("P(X,Y)Z,U) and (¢;) is an orthonormal basis of the tangent space at any point
and summing over 1 <i<nin (6.12). From (5.1) and (6.12), we have

RicP(X,Y) = (a—b)S(X,¥) + 2= ra(x, 7). (6.13)

If R(X,Y).RicP = 0, then we have

RicP(R(X,Y)U,V)+ RicP(U,R(X,Y)V) = 0. (6.14)
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For constants ¢ and f3, taking X = & in (6.14) and using (3.7), we have
(a* — B g(U,Y)RicP(E,V) —n(U)RicP(Y,V) + (o> — B*)g(V,Y)RicP(U,E) —n(V)RicP(U,Y) = 0.
Then either ¢ = 48 or
g(U,Y)RicP(&,V) —n(U)RicP(Y,V)+g(V,Y)RicP(U,&) —n(V)RicP(U,Y) =0. (6.15)
By using (6.13) and (3.11) in (6.15), we obtain

(a=b) [ (e(n—1)(0* = 5B%) + =) (s(r,V)n(U) +g(¥,U)n(V)]

n
—(a=b)(S(Y,V)n(U)+S(¥,U)n(V)) =0. (6.16)

Taking V = & in (6.16) and using (2.5) and (3.11), we obtain
S(Y,U) = (n—1)e(ea® —8B)g(Y,U), (6.17)

i.e. M is an Einstein manifold.
Taking Y = U = ¢;, and summing over i = 1,...,n, we obtain

r=n(n—1)e(ea®—8p>).
Thus we have

Theorem 6.3. Let M be an (€, §)-trans-Sasakian manifold and let R(X,Y).RicP = 0 hold in M. Then either
o = B or M is an Einstein manifold in which case the curvature is given by r = n(n— 1)e(ea® — 8 B?).

7. CONCLUSIONS

The (€, 0)-trans-Sasakian manifolds generalize the (€)-Sasakian and the (€)-Kenmotsu manifolds. The
indefinite metrics which arose during the study of physics and relativity from the geometric point of view
influences the curvature. In this paper we proved under certain conditions that the (€, 0)-trans-Sasakian
manifolds reduce to the manifolds of constant curvature. Further we showed that (€, 0)-trans-Sasakian
manifolds with a pseudo-projective curvature tensor are Einstein. The study of these structures with semi-
symmetry conditions would give interesting results.
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(g, 8)-trans-Sasaki muutkondadest
Halammanavar G. Nagaraja, Rangaswami C. Premalatha ja Ganganna Somashekara

On uuritud (g,6)-trans-Sasaki muutkondi, mis iildistavad (€)-Sasaki ja (J)-Kenmotsu muutkondade
moisteid. Naite varal on tdestatud taolise struktuuri olemasolu ja uuritud ¢-kordse, pseudoprojektiivselt
lamedaid ning pseudoprojektiivselt poolsiimmeetrilisi (€, d)-trans-Sasaki muutkondi.



