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Abstract. We discuss the rate of approximation of the Kantorovich operators. The rate of approximation is given with respect to
the variation seminorm.
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1. INTRODUCTION

The paper deals with the convergence in variation of the Kantorovich operators. In [7] we proved similar
results for the Meyer-König and Zeller operators.

Let TV [0,1], respectively AC[0,1], denote the class of all functions of bounded variation, respectively
the absolutely continuous functions on [0,1]. Let Ln : TV [0,1]→ TV [0,1] be an arbitrary positive operator,
i.e. for f ≥ 0 we have Ln f ≥ 0. It is known that many linear positive operators have the variation detracting
property (or the variational diminishing property, cf. [10]) in the following form: for all f ∈ TV [0,1] with
the total variation V[0,1][ f ] we have Ln f ∈ TV [0,1] and

V[0,1][Ln f ]≤V[0,1][ f ].

For example, the variation detracting property is valid for the Bernstein, Meyer-König and Zeller, and Stancu
operators (see [2], where the problem is posed and solved even for the ϕ-variation). The variation detracting
property is needed to consider the convergence in variation, i.e. for all f ∈ TV [0,1] there has to be

V[0,1][Ln f − f ]→ 0.

The convergence in ϕ-variation of many positive operators was considered in [2], but not of Kantorovich-
type operators.

The operators of Kantorovich

(Kn f )(x) = (n+1)
n

∑
k=0

pk,n(x)
∫ k+1

n+1

k
n+1

f (u)du (x ∈ [0,1]), (1.1)
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where

pk,n(x) :=
(

n
k

)
xk(1− x)n−k,

were introduced in [6] and their asymptotic or approximation behaviour has been investigated in many works
(see, for example, [1,4,5,8] and literature cited there). In the case of the Kantorovich operators the variation
detracting property holds as follows.

Theorem A. ([3], Proposition 3.3) If f ∈ TV [0,1], then Kn f ∈ AC[0,1] and

V[0,1][Kn f ]≤V[0,1][ f ].

The convergence in variation for smooth functions is given in Section 2, Theorem 1. We prove not
only the convergence in variation of the Kantorovich operators, but also give the rate of approximation in
Theorem 2.

For the following proof of Theorem 1 we calculate the derivative of Kn f ,

(Kn f )′(x) =
n+1

X

n

∑
k=0

(k−nx)pk,n(x)
∫ k+1

n+1

k
n+1

f (u)du (x ∈ (0,1)), (1.2)

where X = x(1− x). In the same proof we need the sum moments for the operators (1.1). Let us define the
sum moments as in [3]:

Tr,n(x) :=
n

∑
k=0

[k−nx]r pk,n(x). (1.3)

Then there hold the identities (see, e.g., [3] or original presentation in [9])

Tr,n(x) =





1, r = 0,

0, r = 1,

nX , r = 2,

nX(1−2x), r = 3.

(1.4)

2. APPROXIMATION IN VARIATION BY THE KANTOROVICH OPERATORS

We start with studying the rate of approximation of smooth functions with respect to the variation seminorm.

Theorem 1. If g′′ ∈ AC[0,1], then

V[0,1][Kng−g]≤ 4
n+1

(V[0,1][g]+V[0,1][g
′′]) (n≥ 3). (2.1)

Proof. We represent f in (1.2) by Taylor’s formula with the integral remainder term

g(t) = g(x)+(t− x)g′(x)+(t− x)2 g′′(x)
2

+
1
2

∫ t

x
(t− v)2g′′′(v)dv.

We have

(Kng)′(x) = A0,n(x)g(x)+A1,n(x)g′(x)+A2,n(x)
g′′(x)

2
+(Rng)(x), (2.2)
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where

A j,n(x) =
n+1

X

n

∑
k=0

(k−nx)pk,n(x)
∫ k+1

n+1

k
n+1

(t− x) jdt ( j = 0,1,2) (2.3)

and

(Rng)(x) :=
n+1
2X

n

∑
k=0

(k−nx)pk,n(x)
∫ k+1

n+1

k
n+1

dt
∫ t

x
(t− v)2g′′′(v)dv. (2.4)

Calculating (2.3) by (1.3) and (1.4), we have

A0,n(x) =
T1,n(x)

X
= 0.

Analogously,

A1,n(x) =
T2,n(x)+(1

2 − x)T1,n(x)
(n+1)X

=
n

n+1

and

A2,n(x) =
T3,n(x)+(1−2x)T2,n(x)+(1

3 − x+ x2)T1,n(x)
(n+1)2X

=
2n(1−2x)
(n+1)2 .

So, by (2.2), (2.3) and (2.4) we have for the derivative

(Kng)′(x) =
n

n+1
g′(x)+

n(1−2x)
(n+1)2 g′′(x)+(Rng)(x). (2.5)

The integration domain of the double integral in the remainder (2.4) is

Dx,k =
{
(t,v)

∣∣∣ k
n+1

≤ t ≤ k +1
n+1

, v ∈ [x, t]
}

.

We denote tk := k
n+1 . For fixed x ∈ (0,1) we divide the summation indices k into three sets: tk+1 ≤ x,

tk ≤ x < tk+1 or tk > x. Hence, for the remainder we get ([x] denotes the integer part of x)

(Rng)(x) = ∑
tk+1≤x

...+ ∑
tk≤x<tk+1

...+ ∑
tk>x

...

=
[(n+1)x]−1

∑
k=0

...+
[(n+1)x]

∑
k=[(n+1)x]

...+
n

∑
k=[(n+1)x]+1

... .

Here and later on we take ∑a
k=0 ... = 0 if a < 0 and ∑n

k=b ... = 0 if b > n. In each summand we change the
order of integration by splitting the double integration domain Dx,k in a suitable way. After that we get six
different sums. So we have

(Rng)(x) =
6

∑
i=1

Bi,ng(x)≡
6

∑
i=1

Bi,ng, (2.6)

where, denoting

qk,n(x) :=
n+1
2X

(k−nx)pk,n(x),
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we obtain

B1,ng := −
[(n+1)x]−1

∑
k=0

qk,n(x)
∫ k+1

n+1

k
n+1

g′′′(v)dv
∫ v

k
n+1

(t− v)2dt, (2.7)

B2,ng := −
[(n+1)x]−1

∑
k=0

qk,n(x)
∫ x

k+1
n+1

g′′′(v)dv
∫ k+1

n+1

k
n+1

(t− v)2dt, (2.8)

B3,ng := −
[(n+1)x]

∑
k=[(n+1)x]

qk,n(x)
∫ x

k
n+1

g′′′(v)dv
∫ v

k
n+1

(t− v)2dt, (2.9)

B4,ng :=
[(n+1)x]

∑
k=[(n+1)x]

qk,n(x)
∫ k+1

n+1

x
g′′′(v)dv

∫ k+1
n+1

v
(t− v)2dt, (2.10)

B5,ng :=
n

∑
k=[(n+1)x]+1

qk,n(x)
∫ k

n+1

x
g′′′(v)dv

∫ k+1
n+1

k
n+1

(t− v)2dt, (2.11)

B6,ng :=
n

∑
k=[(n+1)x]+1

qk,n(x)
∫ k+1

n+1

k
n+1

g′′′(v)dv
∫ k+1

n+1

v
(t− v)2dt. (2.12)

Let us estimate B1,ng in (2.7). Since for k
n+1 ≤ v≤ k+1

n+1 we have
∫ v

k
n+1

(t− v)2dt ≤ 1
3(n+1)3 ,

by using Cauchy’s inequality and (1.3), we get for (2.7) the estimate

|(B1,ng)(x)| ≤ ‖g′′′‖
6X(n+1)2

(
n

∑
k=0

(k−nx)2 pk,n(x)

) 1
2
(

n

∑
k=0

pk,n(x)

) 1
2

≤ 1
6X(n+1)2 (T2,n(x))

1
2 (T0,n(x))

1
2 ‖g′′′‖,

where here and later on the norm is taken in L1(0,1), i.e.

‖ f‖ := ‖ f‖L1(0,1).

Finally, by (1.4) and
∫ 1

0
1√
X

dx = π we obtain for norms

||B1,ng|| ≤ π
6(n+1)

3
2
||g′′′||. (2.13)

We get in a similar way the same estimate for B6,ng in (2.12).
In the following we estimate the sum B2,ng+B5,ng of expressions in (2.8) and (2.11). Let by (2.8)

B2,ng = B1
2,ng+B2

2,ng :=
[(n+1)x]−1

∑
k=0

...
∫ k

n

x
...dv...+

[(n+1)x]−1

∑
k=0

...
∫ k+1

n+1

k
n

...dv... (2.14)

and by (2.11)

B5,ng = B1
5,ng−B2

5,ng :=
n

∑
k=[(n+1)x]+1

...
∫ k

n

x
...dv...−

n

∑
k=[(n+1)x]+1

...
∫ k

n

k
n+1

...dv... . (2.15)
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In expressions of B2
2,ng and B2

5,ng the variable v is on [ k
n+1 , k+1

n+1 ], therefore

∫ k+1
n+1

k
n+1

(t− v)2dt ≤ 1
3(n+1)3 , v ∈

[
k

n+1
,

k +1
n+1

]
. (2.16)

Hence, the quantities B2
2,ng and B2

5,ng can be estimated in the same way as we did before for B1,ng. So we
can state that the estimate (2.13) is valid also for B2

2,ng and B2
5,ng. Now consider the sum

B1
2,ng+B1

5,ng :=
[(n+1)x]−1

∑
k=0

qk,n(x)
∫ k

n

x
g′′′(v)dv

∫ k+1
n+1

k
n+1

(t− v)2dt

+
n

∑
k=[(n+1)x]+1

qk,n(x)
∫ k

n

x
g′′′(v)dv

∫ k+1
n+1

k
n+1

(t− v)2dt

=
n

∑
k=0

qk,n(x)
∫ k

n

x
g′′′(v)dv

∫ k+1
n+1

k
n+1

(t− v)2dt

−
[(n+1)x]

∑
k=[(n+1)x]

qk,n(x)
∫ k

n

x
g′′′(v)dv

∫ k+1
n+1

k
n+1

(t− v)2dt

=: C1,ng−C2,ng.

For C2,ng we can prove that (2.13) is valid. Indeed, for fixed x ∈ (0,1) and n∈ IN the quantity C2,ng consists
of one summand with the index k = [(n+1)x], i.e.

C2,ng(x) = qk,n(x)
∫ k

n

x
g′′′(v)dv

∫ k+1
n+1

k
n+1

(t− v)2dt. (2.17)

To estimate the norm ‖C2,ng‖, we decompose the interval (0,1) into n+1 equal parts,

‖C2,ng‖ =
n+1

2

n

∑
i=0

∫ i+1
n+1

i
n+1

|k−nx|
x(1− x)

pk,n(x)
∣∣∣
∫ k

n

x
g′′′(v)dv

∫ k+1
n+1

k
n+1

(t− v)2dt
∣∣∣dx

≤ n+1
2

n

∑
i=0

∫ i+1
n+1

i
n+1

|i−nx|
x(1− x)

pi,n(x)
∫ i

n

x
|g′′′(v)|dv

∫ i+1
n+1

i
n+1

(t− v)2dtdx.

Here the second relation holds because for i
n+1 ≤ x < i+1

n+1 and k = [(n +1)x] we have k = i. By (2.16) and
Cauchy’s inequality we get

‖C2,ng‖ ≤ ‖g′′′‖
6(n+1)2

n

∑
i=0

∫ i+1
n+1

i
n+1

|i−nx|
X

pi,n(x)dx

≤ ‖g′′′‖
6(n+1)2

∫ 1

0

1
X

( n

∑
i=0
|i−nx|2 pi,n(x)

) 1
2
( n

∑
i=0

pi,n(x)
) 1

2
dx,

which by (1.4) yields

‖C2,ng‖ ≤ ‖g′′′‖
6(n+1)2

∫ 1

0

(nX)
1
2

X
dx≤ π‖g′′′‖

6(n+1)
3
2
.

Thus, for C2,ng in (2.17) again (2.13) is valid.
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Looking at (2.17) and (2.9), (2.10), it is clear that also B3,ng and B4,ng can be estimated as in (2.13).
The summary of the estimates for Bi,ng (i = 1, ...,6) in (2.7)–(2.12) states:

1. for Bi,ng with i = 1,3,4,6 the estimate (2.13) is valid,
2. for the sum B2,ng+B5,ng≡ (B1

2,ng+B2
2,ng)+(B1

5,ng+B2
5,ng) the terms B2

2,ng and B2
5,ng satisfy (2.13), and

in B1
2,ng+B1

5,ng≡C1,ng+C2,ng the term C2,ng satisfies (2.13) as well. So, we can write

||Bi,ng|| ≤ π
6(n+1)

3
2
||g′′′||, i = 1,3,4,6,

||B2
j,ng|| ≤ π

6(n+1)
3
2
||g′′′||, j = 2,5, (2.18)

||C2,ng|| ≤ π
6(n+1)

3
2
||g′′′||.

Finally, we have to estimate

(C1,ng)(x) :=
n+1
2X

n

∑
k=0

(k−nx)pk,n(x)
∫ k

n

x
g′′′(v)dv

∫ k+1
n+1

k
n+1

(t− v)2dt.

As k−nx and the integral
∫ k

n
x |...| have the same sign, we get

|(C1,ng)(x)| ≤ 1
6X

n

∑
k=0

(k−nx)pk,n(x)
∫ k

n

x
|g′′′(v)|

((
k +1
n+1

− v
)2

+
(

k +1
n+1

− v
)(

k
n+1

− v
)

+
(

k
n+1

− v
)2

)
dv.

The function

h(v) :=
(

k +1
n+1

− v
)2

+
(

k +1
n+1

− v
)(

k
n+1

− v
)

+
(

k
n+1

− v
)2

is positive, convex everywhere and h( k
n) ≤ 1

(n+1)2 . Therefore, by an obvious inequality h(v) ≤ h(x)+ h( k
n)

for v ∈ [x, k
n ] we obtain

‖C1,ng‖ ≤
∫ 1

0

1
6X

n

∑
k=0

(k−nx)pk,n(x)

(∫ k
n

0
−

∫ x

0

)
|g′′′(v)|dv

×
(

h(x)+
1

(n+1)2

)
dx =: C1

1,n−C2
1,n. (2.19)

For integration we represent h(x) by powers of k−nx in the form

(n+1)2h(x) = 3(k−nx)2 +3(1−2x)(k−nx)+(1−3X).

Applying Fubini’s theorem for the first part of (2.19), we get

C1
1,n :=

1
6(n+1)2

n

∑
k=0

∫ k
n

0
|g′′′(v)|dv

∫ 1

0

((n+1)2h(x)+1)(k−nx)
X

pk,n(x)dx,
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where the inner integral can be evaluated and estimated by

Ik,n :=
∣∣∣
∫ 1

0

3(k−nx)3 +3(1−2x)(k−nx)2 +(2−3X)(k−nx)
X

pk,n(x)dx
∣∣∣

=
∣∣∣3(2k−n)

n+2

∣∣∣≤ 3n
n+2

, 1≤ k ≤ n−1

and
Ik,n ≤ 3n

n+2
+2, k = 0, k = n.

Hence, summing the former integral over all k yields

|C1
1,n| ≤ 1

6(n+1)2

(
3n(n+1)

n+2
+4

)
‖g′′′‖

≤ 1
2(n+1)

‖g′′′‖, n≥ 1. (2.20)

We calculate the second part of (2.19) using the representation of (n + 1)2h(x), and the moments (1.3)
and (1.4),

C2
1,n :=

∫ 1

0

1
6X

∫ x

0
|g′′′(v)|dv

n

∑
k=0

(k−nx)pk,n(x)
(

h(x)+
1

(n+1)2

)
dx

=
∫ 1

0

1
6X(n+1)2

∫ x

0
|g′′′(v)|dv(6nX(1−2x))dx

=
n

(n+1)2

∫ 1

0
(v2− v)|g′′′(v)|dv,

hence
|C2

1,n| ≤
1

4(n+1)
‖g′′′‖. (2.21)

Therefore, for (2.19) we obtain

‖C1,ng‖ ≤ 3
4(n+1)

‖g′′′‖. (2.22)

Collecting the results in (2.18) and (2.22), we have by (2.6)

||Rng|| ≤ 9+7π
12(n+1)

||g′′′|| (n≥ 3).

Finally, we obtain by using (2.5)

||(Kng)′−g′|| ≤ ||g′||
n+1

+
||g′′||
n+1

+
9+7π

12(n+1)
||g′′′|| (n≥ 3).

Now we use Stein’s inequality with the exact constant (see, e.g., [11], Theorem A10.1)

||g′′||L1 ≤ π3

16

√
||g′||L1 ||g′′′||L1

and the inequality for the geometric and arithmetic means. So we have

||(Kng)′−g′|| ≤ 4
n+1

(||g′||+ ||g′′′||) (n≥ 3),

which finishes our proof. ¤
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The proof of Theorem 3.7 in [3] (see also [7]) gives a general scheme for getting the rate of convergence
of absolutely continuous functions from the corresponding convergence theorem of smooth functions
(Theorem 1). Since Theorem A and Theorem 1 are valid for the Kantorovich operators, we may formulate
the general result by using this scheme. Below (4r

hg)(x) denotes the central difference of g of order r,

(4r
hg)(x) :=

r

∑
k=0

(−1)k
(

r
k

)
g
(

x+
( r

2
− k

)
h
)

.

Theorem 2. If f ∈ AC[0,1], then there exist constants c1,c2 > 0 such that

V[0,1][Kn f − f ]≤ c1 sup
0<h≤n−

1
2

V[h,1−h][42
h f ]+ c2

V[0,1][ f ]
n

.

In particular, if f ′ ∈ AC[0,1], then there exists a constant c3 > 0 such that

V[0,1][Kn f − f ]≤ c3√
n

sup
0<h≤n−

1
2

V[ h
2 ,1− h

2 ][4
1
h f ′]+ c2

V[0,1][ f ]
n

.

3. CONCLUSIONS

Lorentz [9] was the first to consider the variation detracting property for the Bernstein operators. Because the
Bernstein operators are classical prototypes for many positive operators, the variation detracting property has
been studied for many positive operators like the Meyer-König and Zeller, Kantorovich, Stancu operators,
etc. In this paper the variation detracting property is related in a natural way with the convergence in
variation, particularly for the Kantorovich operators (Theorems 1 and 2). The study of the convergence
in variation seminorm is a comparatively new field in the theory of approximation (see, e.g., [3]). Our
Theorems 1 and 2 solve the problem of the convergence in variation for the Kantorovich operators. The
proof of the main theorem, Theorem 1, follows the known idea using Taylor’s formula, but it is nontrivial in
any meaning. Probably, some technical tricks from our proof can be used for some other positive operators.

ACKNOWLEDGEMENTS

This research was partially supported by the Estonian Science Foundation (grant 8627), the Estonian
Ministry of Education and Research (project SF0132723s06), and the European Union through the European
Regional Development Fund (Centre of Excellence “Mesosystems: Theory and Applications”, TK114).

REFERENCES

1. Abel, U. Asymptotic approximation with Kantorovich polynomial. Approx. Theory Appl., 1998, 14, 106–116.
2. Adell, J. A. and de la Cal, J. Bernstein-type operators diminish the ϕ-variation. Constr. Approx., 1996, 12, 489–507.
3. Bardaro, C., Butzer, P. L., Stens, R. L., and Vinti, G. Convergence in variation and rates of approximation for Bernstein-type

polynomials and singular convolution integrals. Analysis (Munich), 2003, 23, 299–340.
4. DeVore, R. A. and Lorentz, G. G. Constructive Approximation. Springer, Berlin, 1993.
5. Ditzian, Z. and Totik, V. Moduli of Smoothness. Springer, New York, 1987.
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Kantorovichi operaatoritega lähendamine variatsiooni mõttes

Andi Kivinukk ja Tarmo Metsmägi

On uuritud Kantorovichi operaatoritega lähendamise kiirust, mida mõõdetakse funktsiooni (või selle tule-
tiste) täisvariatsiooni abil. On tõestatud, et kui lähendatav funktsioon on absoluutselt pidev (või vastavalt
esimene ehk teine tuletis on absoluutselt pidevad), siis lähendamise kiirus on hinnatav funktsiooni (vastavalt
selle tuletiste) täisvariatsiooni kaudu.


