Necessary conditions for inclusion relations for double absolute summability

Ekrem Savaş\(^a\) and B. E. Rhoades\(^b\)

\(^a\) Department of Mathematics, Istanbul Ticaret University, Üsküdar-Istanbul, Turkey
\(^b\) Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, U.S.A.; rhoades@indiana.edu

Received 2 February 2010, accepted 5 April 2010

Abstract. We establish necessary conditions for a general inclusion theorem involving a pair of doubly triangular matrices. As corollaries we obtain inclusion results for some special classes of doubly triangular matrices.

Key words: absolute summability factors, doubly triangular summability.

1. INTRODUCTION

A doubly infinite matrix \(A = (a_{mni j})\) is said to be doubly triangular if \(a_{mni j} = 0\) for \(i > m\) and \(j > n\). The \(mn\)-th term of the \(A\)-transform of a double sequence \(\{s_{mn}\}\) is defined by

\[
T_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{mni j} s_{ij}.
\]

A series \(\sum \sum c_{mn}\), with partial sums \(s_{mn}\) is said to be absolutely \(A\)-summable, of order \(k \geq 1\), if

\[
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |\Delta_{11} T_{m-1,n-1}|^k < \infty,
\]

where, for any double sequence \(\{u_{mn}\}\), and for any fourfold sequence \(\{a_{mni j}\}\), we define

\[
\Delta_{11} u_{mn} = u_{mn} - u_{m+1,n} - u_{m,n+1} + u_{m+1,n+1},
\]

\[
\Delta_{11} a_{mni j} = a_{mni j} - a_{m+1,n,i,j} - a_{m,n+1,i,j} + a_{m+1,n+1,i,j},
\]

\[
\Delta_{ij} a_{mni j} = a_{mni j} - a_{m,n+1,i,j} - a_{m,n,i+1,j} + a_{m,n,i,j+1},
\]

\[
\Delta_{i0} a_{mni j} = a_{mni j} - a_{m,n,i+1,j},
\]

\[
\Delta_{0j} a_{mni j} = a_{mni j} - a_{m,n,i,j+1}.
\]

The one-dimensional version of (1) appears in [1].

\(^*\) Corresponding author, ekremsavas@yahoo.com; esavas@iticu.edu.tr
Associated with A are two matrices \tilde{A} and \hat{A} defined by

$$\tilde{a}_{mni} = \sum_{\mu=0}^{m} \sum_{\nu=0}^{n} a_{\mu\nu}$$

and

$$\hat{a}_{mni} = \Delta_{1} \tilde{a}_{m-1,n-1,i,j}, \ 0 \leq i \leq m, \ 0 \leq j \leq n, \ m,n = 0,1,\ldots,$$

and

$$\hat{a}_{mni} = \Delta_{1} \tilde{a}_{m-1,n-1,i,j}, \ 0 \leq i \leq m, \ 0 \leq j \leq n, \ m,n = 1,2,\ldots.$$

It is easily verified that $\hat{a}_{0000} = \hat{a}_{0000} = a_{0000}$. In [3] it is shown that

$$\hat{a}_{mni} = \sum_{\mu=0}^{m} \sum_{\nu=0}^{n} \Delta_{1} a_{m-1,n-1,\mu,\nu}.$$

Thus $\hat{a}_{m00} = \hat{a}_{m00} = 0$.

Let x_{mn} denote the mth term of the A-transform of the sequence of partial sums $\{s_{mn}\}$ of the series $\sum \sum c_{mn}$. Then

$$x_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{mni} s_{ij} = \sum_{i=0}^{m} \sum_{j=0}^{n} \sum_{\mu=0}^{i} \sum_{\nu=0}^{j} a_{\mu\nu} c_{\mu\nu}$$

and

$$x_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{n} \tilde{a}_{mni} c_{ij},$$

and a direct calculation verifies that

$$X_{mn} := \Delta_{1} x_{m-1,n-1} = \sum_{i=0}^{m} \sum_{j=0}^{n} \hat{a}_{mni} c_{ij},$$

since

$$\tilde{a}_{m-1,n-1,m,j} = a_{m-1,n-1,i,n} = \hat{a}_{m,n-1,i,n} = \hat{a}_{m-1,n,m,n} = 0.$$

2. MAIN RESULT

We have the following theorem

Theorem 1. Let $1 < k \leq s < \infty$, A and B be doubly triangular matrices with A satisfying

$$\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\Delta_{uv} \hat{a}_{mnuv}|^{k} = O(M^{k}(\hat{a}_{uvuv})), \quad (3)$$

where

$$M(\hat{a}_{uvuv}) := \max \{ |\hat{a}_{uvuv}|, |\Delta_{0} \hat{a}_{uv+1,v,u,v}|, |\Delta_{0} \hat{a}_{u+1,u,v,v}| \}.$$

Then necessary conditions for $\sum \sum c_{mn}$ summable $|A|_{k}$ to imply that $\sum \sum c_{mn}$ is summable $|B|_{s}$ are:

(i) $|\bar{b}_{uvuv}| = O((uv)^{1/s-1/k}M(\hat{a}_{uvuv}))$,

(ii) $|\Delta_{0} \bar{b}_{uv+1,v,u,v}| = O((uv)^{1/s-1/k}M(\hat{a}_{uvuv}))$,

(iii) $|\Delta_{0} \bar{b}_{u+1,u,v,v}| = O((uv)^{1/s-1/k}M(\hat{a}_{uvuv}))$,

(iv) $\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{s-1} |\Delta_{uv} \bar{b}_{mnuv}|^{s} = O((uv)^{s-1/k}M^{s}(\hat{a}_{uvuv}))$,

(v) $\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{s-1} |\bar{b}_{m,n,u+1,v+1}|^{s} = O\left(\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{a}_{m,n,u+1,v+1}|^{k} \right)^{s/k}$.
Proof. We are given that
\[
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{x-1} |Y_{mn}|^s < \infty, \tag{4}
\]
whenever
\[
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |X_{mn}|^k < \infty, \tag{5}
\]
where
\[
Y_{mn} = \Delta_{11}y_{m-1,n-1},
\]
\[
y_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{n} \tilde{p}_{mn}c_{ij}.
\]
The space of sequences satisfying (5) is a Banach space if normed by
\[
\|X\| = \left(|X_{00}|^k + |X_{01}|^k + |X_{10}|^k + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |X_{mn}|^k \right)^{1/k}. \tag{6}
\]
We shall also consider the space of sequences \(\{Y_{mn}\} \) that satisfy (4). This space is also a BK-space with respect to the norm
\[
\|Y\| = \left(|Y_{00}|^s + |Y_{01}|^s + |Y_{10}|^s + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{s-1} |Y_{mn}|^s \right)^{1/s}. \tag{7}
\]
The transformation \(y_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{n} \tilde{p}_{mn}c_{ij} \) maps sequences satisfying (5) into sequence spaces satisfying (4). By the Banach–Steinhaus Theorem there exists a constant \(K > 0 \) such that
\[
\|Y\| \leq K\|X\|. \tag{8}
\]
For fixed \(u,v \), the sequence \(\{c_{ij}\} \) is defined by \(c_{uv} = c_{u+1,v+1} = 1, c_{u+1,v} = c_{u,v+1} = -1, c_{ij} = 0 \), otherwise, gives
\[
X_{mn} = \begin{cases}
0, & m \leq u, \ n < v, \\
0, & m < u, \ n \leq v, \\
\hat{a}_{mn}a_{uv}, & m = u, \ n = v, \\
\Delta_{a0}\hat{a}_{mn}, & m = u + 1, \ n = v, \\
\Delta_{a0}\hat{a}_{mn}, & m = u, \ n = v + 1, \\
\Delta_{av}\hat{a}_{mn}, & m > u, \ n > v
\end{cases}
\]
and
\[
Y_{mn} = \begin{cases}
0, & m \leq u, \ n < v, \\
0, & m < u, \ n \leq v, \\
\hat{b}_{mn}b_{uv}, & m = u, \ n = v, \\
\Delta_{b0}\hat{b}_{mn}, & m = u + 1, \ n = v, \\
\Delta_{b0}\hat{b}_{mn}, & m = u, \ n = v + 1, \\
\Delta_{bv}\hat{b}_{mn}, & m > u, \ n > v
\end{cases}
\]
From (6) and (7) it follows that
\[
\|X\| = \left((uv)^{k-1}|\hat{a}_{uv}|^k + ((u+1)v)^{k-1}|\Delta_{a0}a_{u+1,v,u,v}|^k \\
+ (u(v+1))^{k-1}|\Delta_{a0}a_{u,v+1,u,v}|^k + \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1}|\Delta_{av}\hat{a}_{mn}a_{uv}|^k \right)^{1/k}. \tag{9}
\]
and
\[||Y|| = \left\{ (uv)^{s-1} |\hat{b}_{uvv}|^s + ((u+1)v)^{s-1} |\Delta_0 \hat{b}_{u+1,vu,v}|^s \\
+ (u(v+1))^{s-1} |\Delta_0 \hat{b}_{u,v+1,u,v}|^s + \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{s-1} |\Delta_{mn} \hat{a}_{mnuv}|^s \right\}^{1/s}. \] (10)

Substituting (9) and (10) into (8), along with (3), gives
\[
(\text{uv})^{s-1} |\hat{b}_{uvv}|^s + ((u+1)v)^{s-1} |\Delta_0 \hat{b}_{u+1,vu,v}|^s + (u(v+1))^{s-1} |\Delta_0 \hat{b}_{u,v+1,u,v}|^s \\
+ \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{s-1} |\Delta_{mn} \hat{a}_{mnuv}|^s \leq K^s \left\{ (uv)^{k-1} |\hat{a}_{uvuv}|^k \\
+ ((u+1)v)^{k-1} |\Delta_0 \hat{a}_{u+1,vu,v}|^k + (u(v+1))^{k-1} |\Delta_0 \hat{a}_{u,v+1,u,v}|^k \\
+ \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\Delta_{mn} \hat{a}_{mnuv}|^k \right\}^{s/k} \\
= K^s \left\{ O(1)(uv)^{k-1} M^k (\hat{a}_{uvuv})^{s/k} \right\}^{s/k}.
\]

The above inequality implies that each term of the left-hand side is \(O((uv)^{k-1} M^k (\hat{a}_{uvuv})^{s/k}) \).

Using the first term, one obtains
\[
(\text{uv})^{s-1} |\hat{b}_{uvv}|^s = O((uv)^{s-k-1} M^k (\hat{a}_{uvuv})^{s/k}),
\]
or
\[
|\hat{b}_{uvv}|^s = O((uv)^{s-k-s+1} M^k (\hat{a}_{uvuv})).
\]

Thus
\[
|\hat{b}_{uvv}| = O((uv)^{1/s-1/k} M (\hat{a}_{uvuv})),
\]
which is condition (i).

In a similar manner one obtains conditions (ii)–(iv). Using the sequence defined by \(c_{u+1,v+1} = 1 \), and \(a_{ij} = 0 \) otherwise yields
\[
X_{mn} = \begin{cases}
0, & m \leq u + 1, \ n \leq v, \\
0, & m \leq u, \ n \leq v + 1, \\
\hat{a}_{m,n,u+1,v+1}, & m \geq u + 1, \ n \geq v + 1
\end{cases}
\]
and
\[
Y_{mn} = \begin{cases}
0, & m \leq u + 1, \ n \leq v, \\
0, & m \leq u, \ n \leq v + 1, \\
\hat{b}_{m,n,u+1,v+1}, & m \geq u + 1, \ n \geq v + 1.
\end{cases}
\]

The corresponding norms are
\[
||X|| = \left\{ \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{a}_{m,n,u+1,v+1}|^k \right\}^{1/k}
\]
and
\[
||Y|| = \left\{ \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{s-1} |\hat{b}_{m,n,u+1,v+1}|^s \right\}^{1/s}.
\]

Applying (8), one obtains
\[
\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{s-1} |\hat{b}_{m,n,u+1,v+1}|^s \leq K^s \left\{ \sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{a}_{m,n,u+1,v+1}|^k \right\}^{s/k},
\]
which is equivalent to (v). \(\square \)
Corollary 1. Let $1 \leq k < \infty$, A and B be two doubly triangular matrices, A satisfying (3). Then necessary conditions for $\sum c_{mn}$ summable $|A|_k$ to imply that $\sum c_{mn}$ is summable $|B|_k$ are

(i) $|\hat{b}_{uvv}| = O(M(\hat{a}_{uvv}))$,
(ii) $|\Delta_{00}\hat{a}_{u+1,v,v}| = O(M(\hat{a}_{uvv}))$,
(iii) $|\Delta_{00}\hat{a}_{u,v+1,u,v}| = O(M(\hat{a}_{uvv}))$,
(iv) $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |\Delta_{uv}\hat{a}_{m,n,v+1}| = O(M(\hat{a}_{uvv}))$,
(v) $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |\Delta_{uv}\hat{a}_{m,n,v+1}| = O(M(\hat{a}_{uvv}))$.

Proof. To prove Corollary 1, simply set $s = k$ in Theorem 1.

We shall call a doubly infinite matrix a product matrix if it can be written as the termwise product of two singly infinite matrices F and G; i.e., $a_{mij} = f_{mi}g_{nj}$ for each i,j,m,n.

A doubly infinite weighted mean matrix P has nonzero entries p_{ij}/P_{mn}, where p_{00} is positive and all of the other p_{ij} are nonnegative, and $P_{mn} := \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} p_{ij}$. If P is a product matrix, then the nonzero entries are $p_i q_j / P_m Q_n$, where $p_0 > 0, p_i > 0$ for $i > 0, q_0 > 0, q_j > 0$ for $j > 0$ and $P_m := \sum_{i=0}^{\infty} p_i, Q_n := \sum_{j=0}^{\infty} q_j$.

Corollary 2. Let $1 \leq k < \infty$, P be a product weighted mean matrix, B be a doubly triangular matrix with P satisfying

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (mn)^{k-1} |\Delta_{uvv} P_m q_n P_{u-1} Q_{v-1} P_u Q_v| = O\left(\frac{p_u q_v}{P_u Q_v}\right).$$

Then necessary conditions for $\sum c_{mn}$ summable $|P|_k$ to imply that $\sum c_{mn}$ is summable $|B|_s$ are:

(i) $|\hat{b}_{uvv}| = O\left((uv)^{1-s/k} \frac{p_u q_v}{P_u Q_v}\right)$,
(ii) $|\Delta_{00}\hat{a}_{u+1,v,v}| = O\left((uv)^{1-s/k} \frac{p_u q_v}{P_u Q_v}\right)$,
(iii) $|\Delta_{00}\hat{a}_{u,v+1,u,v}| = O\left((uv)^{1-s/k} \frac{p_u q_v}{P_u Q_v}\right)$,
(iv) $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (mn)^{s-1} |\Delta_{uv} B_{mnv}| = O\left((uv)^{s-1/k} \left(\frac{p_u q_v}{P_u Q_v}\right)^s\right)$, and
(v) $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (mn)^{s-1} |\hat{b}_{m,n,u+1,v+1}| = O(1)$.

Proof. From [3]

$$\hat{b}_{uvv} = \sum_{i=0}^{u-1} \sum_{j=0}^{v-1} \Delta_{11} p_{u-1,v-1,i,j}. \quad (12)$$

Note that

$$\Delta_{11} p_{u-1,v-1,i,j} = p_{u-1,v-1,i,j} - p_{u,v-1,i,j} - p_{u-1,v,i,j} + p_{u,i,j}$$

$$= \frac{p_{i,j} q_j}{P_{u-1} Q_{v-1}} - \frac{p_{i,j} q_j}{P_{u-1} Q_v} - \frac{p_{i,j} q_j}{P_{u} Q_{v-1}} + \frac{p_{i,j} q_j}{P_{u-1} Q_v}$$

$$= \frac{p_{i,j} q_j}{P_{u-1} P_u Q_{v-1} Q_v}. \quad (13)$$
Therefore

\[
\hat{\beta}_{uv} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{P_q j P_u q_v}{P_{u-1} Q_{v-1} Q_v} = \frac{P_u q_v}{P_u Q_v}.
\] (14)

From (12) and (13),

\[
\hat{\beta}_{u+1,v,u,v} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \Delta_{11} P_{u,v-1,i,j} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{P_q j P_{u+1} q_v}{P_{u} P_{v+1} Q_{v-1} Q_v} = \frac{P_{u+1} q_v}{P_{u+1} Q_v}.
\]

Using (2) and (14),

\[
\Delta_{00} \hat{\beta}_{u+1,v,u,v} = \hat{\beta}_{u+1,v,u,v} - \hat{\beta}_{u+1,v,u+1,v} = \frac{P_{u+1} q_v}{P_{u+1} Q_v} - \frac{P_{u+1} q_v}{P_{u+1} Q_v} = 0.
\]

Similarly, \(\Delta_{00} p_{u+1,v,u,v} = 0\). Thus

\[
M(\hat{\beta}_{uv}) = \frac{P_u q_v}{P_u Q_v},
\]

and conditions (i)–(v) take the form represented.

Corollary 3. Let \(B\) be a doubly triangular matrix, \(P\) a product weighted mean matrix satisfying (11). Then necessary conditions for \(\sum \sum c_{mn}\) summable \(|P|_k\) to imply that \(\sum \sum c_{mn}\) is summable \(|B|_k\) are

(i) \(|\hat{\beta}_{uv}| = O\left(\frac{P_u q_v}{P_u Q_v}\right)\),

(ii) \(|\Delta_{00} \hat{\beta}_{u+1,v,u,v}| = O\left(\frac{P_u q_v}{P_u Q_v}\right)\),

(iii) \(|\Delta_{00} \hat{\beta}_{u,v+1,u,v}| = O\left(\frac{P_u q_v}{P_u Q_v}\right)\),

(iv) \(\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\Delta_{uv} \hat{\beta}_{uv}|^k = O\left(\left(\frac{P_u q_v}{P_u Q_v}\right)^k\right)\), and

(v) \(\sum_{m=u+1}^{\infty} \sum_{n=v+1}^{\infty} (mn)^{k-1} |\hat{\beta}_{m,n,u+1,v+1}|^k = O(1)\).

Proof. In Corollary 2 set \(s = k\).

The results of this paper for single summability are available in [2].

3. CONCLUSION

Let \(\sum a_n\) denote a series with partial sums \(s_n\). For an infinite matrix \(A\), the \(n\)th term of the \(A\)-transform of \(\{s_n\}\) is denoted by

\[
t_n = \sum_{v=0}^{\infty} t_m s_v.
\]

Recently, Savas [2] established a general absolute inclusion theorem involving a pair of triangles. But the necessary conditions for a general inclusion theorem involving a pair of doubly triangular matrices has not been studied so far. The present paper has filled in a gap in the existing literature.
ACKNOWLEDGEMENTS

The second author acknowledges support from the Scientific and Technical Research Council of Turkey in the preparation of this paper. We wish to thank the referees for their careful reading of the manuscript and for helpful suggestions.

REFERENCES

Kahekordsete ridade maatriksmenetluste absoluutse sisalduvuse tarvilikud tingimused

Ekrem Savaş ja B. E. Rhoades