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Model checking of emergent behaviour properties of robot swarms
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Abstract. This paper presents a case study on scalability of explicit state model checking. Three state space reduction methods –
state vector compression, bit state hashing, and symmetry reduction – were applied on an exercise with the objective of verifying
a distributed coordination algorithm for robot swarms. Based on the analysis results, the feasibility of using explicit state model
checking to prove properties of large multi-agent systems is questioned and the limitations faced in verifying a dynamic cleaning
algorithm are outlined.
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1. INTRODUCTION

Bonabeau et al. described in [4] the emergent behaviour
of social insects as “a set of dynamical mechanisms
whereby structures appear at the global level of a system
from interactions among its lower-level components”.
Swarm robotics is an approach to the coordination
of multi-agent systems that consist of large numbers
of physical robots. It is supposed that a desired
collective behaviour emerges from the interactions
between the robots and interactions of robots with the
environment. In addition to simple social structure, the
robot swarm can also exhibit intellectual capabilities
like collective learning, rule-based reasoning, collective
decision making, etc. These capabilities create a huge
state space and non-stationary behaviour.

Verification of emergent behaviour properties is
imperative in mission critical applications of robot
swarms like coordinated actions of space pods [17],
early discovery of radioactive leaks in nuclear reactors,
intruder detection and capture, etc. The challenge
in designing swarm coordination algorithms for such
missions is in evaluating the success of the mission,
provided that the environment constraints and the
swarm configuration are given. The formal methods
applicable in multi-agent systems with a low degree
of parallelism have clear scalability limits for swarms.
Therefore, complete state space exploration has limited
uses and current formal approaches have concentrated

on simulation-based partial analysis methods and
specification techniques.

A natural solution for overcoming the complexity
barrier of swarm analysis is to use the compositional
verification approach. Let us call the part of the real
world to be represented for analysis a “swarm world”.
The swarm world consists of swarm robots and the
objects in the environment that participate in robot–
environment interactions. Ideally, when decomposing
a swarm world into smaller parts, the same emergent
behaviour has to be exhibited at a smaller scale down
to some smallest collaborating part (e.g. a pair of col-
laborating robots). Homogeneity of swarm behaviour
(modulo the smallest collaborating swarm world unit)
over all its legal partitionings would then guarantee
that proof of a part of the swarm world with inductive
argument would allow constructing the proof for the
whole swarm.

Unfortunately, the homogeneity assumption is not
very common in the context of practical swarm analysis,
and finding an abstract invariant interface for swarm
world parts in slightly more general cases seems to
be a challenging task that needs the existence of a
generalizing domain theory relevant to the problem.

In this paper we study explicit state model checking
as a potential method for emergent behaviour analysis
of swarms. Three state space reduction methods
– state vector compression, bit state hashing, and
symmetry reduction – were applied on an exercise with
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the objective of verifying a distributed coordination
algorithm for robot swarms. Due to the lack of an abstract
swarm theory that would allow defining rules for swarm
composition and structuring for swarm world model
partitionings and abstract interfaces, no partitionings of
the swarm will be done in the scope of this paper.
Our main hypothesis is that as swarm models are
highly symmetric because of the symmetric behaviour
of agents, symmetry reduction combined with state
vector compression and bit state hashing would allow
considerable upscaling of models applicable for model
checking.

To establish the applicability limits of model
checking for analysis of swarm properties, a distributed
dynamic cleaning algorithm is studied. Each agent
participating in the cleaning is described by the same
set of model templates. To illustrate the time-scalability
of model checking the parameter “time horizon”, which
represents the time during which the observed area must
be serviced, has been introduced in the model.

Verification experiments are made for a model
described in Subsection 4.2 using the above-mentioned
state space reduction methods. The rest of the paper is
arranged as follows: Section 2 gives a brief overview of
the state of the art of formal methods used for formal
analysis of robot swarm emergent behaviour. Section 3
introduces explicit state model checking and the state
space reduction techniques used later in the experiments.
Section 4 presents a case study and performance
analysis of the model checker and state space reduction
techniques. Shortcomings and advantages of the explicit
state model checking showing up in the experiments are
summarized in Section 5.

2. MULTI-AGENT SYSTEMS OF EMERGENT
BEHAVIOUR VERIFICATION: STATE OF
THE ART

As of 2004, only a few formal approaches existed for
analysing the emergent behaviour of swarms [17]. The
following approaches were evaluated:
1. Communicating Sequential Processes (CSP) [10]
2. Weighted Synchronous Calculus of Communicating

Systems (WSCCS) [18]
3. Unity Logic [5]
4. X-Machines [9].
According to the evaluation, CSP is suitable for specify-
ing the process protocols between the robots in the
swarm. Reasoning about a CSP specification can be done
to determine race conditions or CSP description can be
converted into a model checking language to be run in a
model checker.

WSCCS is a process algebra that takes into account
the priorities and probabilities of actions performed by
robots. Furthermore, it provides syntax and a set of
rules for predicting and specifying choices and behaviour
as well as a congruence and syntax for determining if
two automata modelling the behaviour of different robots

are equivalent. Thus, WSCCS can be used to reason
about and even predict the behaviour of one or more
robots. This affords WSCCS the potential for specifying
emergent behaviour in the swarm as used in the ANTS
project [7]. However, it lacks the ability to track the goals
and model the mission of the robots.

Unity Logic provides a logical syntax equivalent
to simple Propositional Logic for reasoning about
predicates and the states they imply as well as for
defining specific mathematical, statistical, and other
simple calculations to be performed. However, it
does not appear to be rich enough to allow ease of
specification and validation of more abstract concepts
such as mission goals.

X-Machines provide a highly executable environ-
ment for specifying the behaviour of a single robot.
This approach allows for a memory to be kept and
for transitions between states to be seen as functions
involving inputs and outputs. This enables to track the
actions of the robot as well as write any aspect of the
goals and the model to the memory. Therefore X-
Machines are highly effective for tracking and affecting
changes in the goals and robot world model. However,
X-Machines do not provide any robust means for
reasoning about or predicting behaviours of more than
one robot beyond standard propositional logic. This will
make specifying emergent behaviour difficult.

A relatively successful attempt of formal modelling
is the work of Martinoli et al. [15], which uses a
stochastic approach in which an ensemble of pro-
babilistic finite state machines describe the overall
structure of the swarm in terms of its microscopic
(individual robot) parameters. However, this work con-
centrates on modelling rather than on formal proofs.

3. EXPLICIT STATE MODEL CHECKING

3.1. Problem and methods of explicit state model
checking

Model checking uses an automatic procedure that
searches all possible states of a formal model. In each
visited state it is checked if the properties of the state
conform to some given specification. Violations of the
specification are reported to the user [2]. Since systems
may contain an infinite number of states, bounds are
placed on the parameters of the system to make this
number finite and guarantee algorithmic termination.
The main obstacle in practical application of model
checking is the problem of state space explosion, where
the addition of small components to a system results
in a combinatorial growth in the number of states
to be explored. Thus, verification of large systems
becomes intractable. Various methods aim to alleviate
this problem, such as partial order reduction [12],
abstraction [6], and symmetry reduction [2]. These
techniques have been implemented in model checking
tools like Spin [12], NuSmV [14], Uppaal [3], etc.
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3.2. Techniques of state space reduction

3.2.1. Symmetry reduction
Symmetry reduction works by constructing equivalence
classes from the model with components of the model
that have equivalent behaviour belonging to the same
equivalence class. During the verification only a single
representative from each equivalence class is examined.
In case the model consists of two identical parts, the
reduction in state space can be up to 50%, as will be
demonstrated in Section 4.2.

3.2.2. Bit state hashing
Bit state hashing is an abstraction technique that works
by computing a hash value of a state using some
hash function. The method was originally conceived by
Morris [16]. The goal of the method is to construct a
bit field that can be used to identify whether the current
state has been visited already. However, the use of bit
state hashing will reduce the accuracy of the outcome
because a state could be mistakenly reported as visited
due to a hash collision and is therefore not stored in the
hash array. Since some of the states might not be stored,
a state that would break the verification conditions may
go unnoticed. However, all reported errors that are found
are real error conditions.

Because the state vector is tens or hundreds of bytes
long, the reduction in memory consumption can be up to
98% when bit state hashing is used [11].

3.2.3. State vector compression and minimized
deterministic finite automaton

The third reduction technique used in the experiments
presented in this paper is minimized deterministic finite
automaton (DFA). In case minimized DFA is used, the
model checker SPIN constructs a new, so-called observer
or detection automaton during the verification. The
constructed automaton is then able to determine if a
state has been visited before. As reported by Holzmann
and Puri in [13], using DFA in verification can reduce
the memory requirements by as much as an order of
magnitude. However, the amount of the used memory
is reduced at the expense of verification time.

4. CASE STUDY

4.1. Problem description

The dynamic cleaning problem defined in [1] can be
described as follows. Let there be a rectangular area A
with height h and width l (the cleaning area). Let there
be n = h · l RFID tags a on that area, distributed evenly
in a grid layout, so that no two tags are closer than one
distance unit. The readability range of the RFID tags
must be at least

√
2

2 distance units, which ensures that
there are no spots within A that are out of the readability
range of an RFID tag. A cleaning zone is defined as

the zone within area A that is in the range for an RFID
tag. Each tag r ∈ R contains at least three data fields:
the timestamp of the latest cleaning, the ID of the agent
occupying the associated cleaning zone, and the ID of the
agent that has reserved the zone.

The deterioration level at every point within A
is considered to be zero initially and it is increased
dynamically by the environment. The speed of increas-
ing the deterioration level may be different in various
points within the area A; however, the speed in a cleaning
zone must remain constant throughout the experiments.
For the sake of simplicity, in this paper it is assumed that
the deterioration speed is equal throughout the cleaning
area.

Let there be a number of agents R that are assigned
to clean the area. The agents visit cleaning zones
with possibly varying frequency and clean the zones
if necessary. Each agent r ∈ R has a limited range
(“visibility range”) L in which it can detect RFID tags.
In principle, L represents the maximum distance between
the agent and a tag that is detectable by the agent. For
example, if L = 1 then an agent can detect the tag the
agent currently occupies and four closest tags in all
orthogonal directions. In the following the value L =

√
2

is used, which means nine tags will remain in an agent’s
visible range – all tags that are detected at L = 1 and
additionally the four nearest tags in diagonal directions.

Cleaning a zone is defined as reducing the
deterioration level in that zone to zero. The area A is con-
sidered to be clean iff the deterioration level at all zones
within A is not higher than a predefined threshold T R:

∀a ∈ A : deterioration(a)≤ T R.

The goal of the problem is to prove that an algorithm
applied to all agents in the swarm will be efficient enough
to keep the area A clean during a given time frame.

4.2. The coordination algorithm

The coordination algorithm of the cleaning swarm
behaves as follows. The agent examines all cleaning
zones within its visible range. In each case it checks if
1. the zone is not occupied,
2. other agents have not decided to move to that zone,
3. the deterioration level of the zone is higher than the

highest value currently known to the agent.
If these conditions have been fulfilled, the deterioration
level of the zone is set as the current highest value known
to the agent. Next, the agent cancels the reservation of
the previously reserved zone (if there is any) and the zone
with the current highest deterioration level is reserved
instead. Reserving the zone is necessary to prevent race
conditions between the agents that are within the visible
range of the locally most deteriorated zone.

When all zones within the visible range have been
examined, there are two actions that the agent can
perform. In case the zone selected by the agent is the
zone that the agent currently occupies, the agent will
start cleaning it. Otherwise, the agent will move to the
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selected cleaning zone. In the experiments conducted in
4.3, the time for moving from one zone to an adjacent
zone and cleaning a zone were chosen as constant values
1 and 5 time units, respectively.

The algorithm has been implemented in Promela, a
language used by the model checker Spin. Since Promela
does not include the concept of time, it is necessary
to emulate the time flow. A simple mutual exclusion
protocol is used instead of global clocks: each agent has
a counter that is incremented after each action the agent
performs; the agent with the highest counter value will
be forced to remain idle – meaning that the agent is not
allowed to perform any tasks and therefore its counter
value cannot increase until the other agents’ counters
catch up. This ensures that the agents are progressing
at an equal pace. To reduce the interleaving between the
agents’ actions, some of the statements in the Promela
model are grouped together using Promela keywords
atomic and d step.

4.3. Analysis of performance and scalability

It was proved in [19] that the given algorithm is correct
when two agents and a relatively short time horizon
are considered. In the current section we show that
using explicit model checking is not efficient enough
to prove the correctness of the algorithm described in
4.2 within an arbitrary time interval. Similar limitation
also concerns any other extension of the parameters
(presenting scalability) of the algorithm. Therefore,
to demonstrate the scalability of the model checking
technique under consideration, in all experiments the
time period in which the algorithm’s properties must be
guaranteed is varied. The time period is bounded by
the time limits usually set to practical model checking.
In this case, the upper bound is further limited by the
exponential growth of the state space.

The model used in this case study represents two
agents and 16 cleaning zones. The number of cleaning
zones was selected based on the performance assumption
that a single agent is able to keep clean an area of
eight zones. According to the given assumptions the

agents are able to clean each zone in the theoretical best
case at least once within 47 time units: cleaning each
zone takes 5 time units, there are 8 zones per agent,
and an agent must move at least 7 times to another
zone. In reality the time required to clean the area is
longer due to the fact that the initial position of the
agents influences the minimal total cleaning time. In
our model setting we assume that both agents start from
the same position. Therefore, the time period for the
cleaning is varied in the scalability experiments from 80
to 90 time units. A further increase, as demonstrated,
will lead to infeasibly long verification time and system
resource usage. Throughout the rest of the chapter,
the following terms are used: by symmetry reduction
we mean the usage of TopSpin symmetry reduction
algorithm; by bit state hashing we mean compiling the
algorithm with the option -DBITSTATE, which applies
bit state hashing to the input model; by state vector
compression we mean compiling the model with the
options -DMA=100, which uses minimized DFA, and
-DCOLLAPSE, which applies state vector compression.
For performance reasons the following parameters were
added when compiling the model: -DSAFETY, which
disables cycle detection; -DNOBOUNDCHECK, which
disables array bound violations; -DMEMLIM=2800 to
ensure that verification will not completely deplete
available resources; -DNOFAIR, which disables weak
fairness.

Figures 1 and 2 demonstrate the commands executed
in verification runs. Additional information on compile
time and runtime options is provided in [11] for Spin and
in [8] for TopSpin.

4.3.1. Memory usage

Based on the test results, it appears that when bit state
hashing is used, Spin allocates memory for hash table
using the following formula:

Mtotal = 2H−3,

where Mtotal represents the total amount of allocated
memory (measured in bits) and H represents the size of

> java -jar ../topspin/TopSPIN 2.2/TopSPIN 2.2.jar proof2.p
> gcc -o sympan sympan.c group.c -DSAFETY -DNOBOUNDCHECK
-DMEMLIM=2800 -DNOFAIR -DBITSTATE
> ./sympan -c0 -w25 -m10000

Fig. 1. Commands used to verify correctness using bit state hashing and symmetry reduction.

> spin -a -v proof2.p
> gcc -o pan pan.c -DSAFETY -DNOBOUNDCHECK -DMEMLIM=2800
-DNOFAIR -DCOLLAPSE -DMA=100
> ./pan -c0 -w25 -m10000

Fig. 2. Commands used to verify correctness using state vector compression.
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Table 1. Memory usage in verifications

Hash table size Symmetry reduction, MB No symmetry reduction, MB

25 313 377
26 569 633
27 1081 1145
28 2105 2169

the hash table. The difference between the total amount
of consumed memory and the amount of memory
allocated for the hash table was less than 1 MB in all
verifications where bit state hashing was used. Since
the server that was used had only 4 GB of RAM
available, some of which was used by the operating
system components, the largest hash table that could have
been used was of size 34, which is 234−3 B or 2 GB of
RAM.

In case of full state space search, the following
formula is used to calculate the amount of memory
allocated for hash table:

Mtotal = 2H+3.

Table 1 shows the total memory consumption in the test
runs where bit state hashing was not used. The memory
usage of 57 MB for states remained constant throughout
the test cases where symmetry reduction was enabled
and 121 MB for tests without symmetry reduction. The
maximum size of the hash table that could be used was
28, which means 228+3 B or 2 GB would be allocated
to the hash table. The amount of consumed memory
increases exponentially in both presented cases, due to
the memory allocation scheme presented above.

4.3.2. Time

Figure 3 shows that once the hash table reaches a certain
level of saturation, the elapsed verification time will vary
very little. It is also clear that the saturation level is
reached sooner when symmetry reduction is used.

Fig. 3. Elapsed time for the duration of 80 units.

Fig. 4. Elapsed time for the duration of 90 units.

When the cleaning duration parameter was increased
to 90, similar results were obtained (see Fig. 4). As the
state space was larger, the stabilization point was reached
at a later stage but once reached, the increase in the
elapsed time almost halted.

4.3.3. State space

In all the cases where bit state hashing was not used, the
size of the hash table did not affect the state space in
any way. Adding symmetry reduction reduced the state
space by approximately 50%, which is the theoretical
limit considering the reduction algorithm that was used.
Although using bit state hashing reduces the state space,
it must be kept in mind that it is an approximate method.
Due to hash collisions there may be states that are
reported as visited but actually are not explored. The
least approximating model checking option used was
bit state search with symmetry reduction enabled – the
explored state space was exactly two states smaller than
the full state space.

4.3.4. Performance evaluation

Two major limitations were met during the verifications.
Firstly, the amount of the available memory is easily
exhausted. As the memory allocation is exponential, the
available memory will be used up very quickly when
the used hash table size is increased. Therefore, the
scalability of all state space reduction methods tried in
the experiments, except the use of minimized DFA, is
insufficient in terms of memory usage. Secondly, the
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amount of the available verification time is limited. The
longest verification in this case study took approximately
3 h to complete. Of course, 3 h is a relatively short time
but considering the size of the model used in verification
– only two agents were used – the elapsed verification
time can be expected to be multiple times longer.
Although the verification time reaches a stabilization
point after which there is no significant increase in the
elapsed verification time, verification is still not scalable.
Figures 5 and 6 represent the verification times for three
different cleaning session durations in case symmetry
reduction was not used and in case symmetry reduction
was used, respectively. For example, let us look at the
verification times for hash table size 32 in case symmetry
reduction was not used. It can be seen that the increase in
the elapsed time is exponential (166 s for the duration of
80 units; 567 s for the duration of 90 units; 1.56×103 s
for the duration of 100 units).

Fig. 5. Comparison of the elapsed time (no symmetry reduc-
tion).

Fig. 6. Comparison of the elapsed time (symmetry reduction
was used).

5. CONCLUSIONS AND FUTURE WORK

In this paper a case study of explicit state model checking
techniques based on a dynamic cleaning problem for
proving properties of emergent behaviour of robot
swarms was presented. Performance analysis of the state
space reduction methods used for the verification of the
distributed coordination algorithm was made. As a result,
we concluded that it is not feasible to use explicit state
model checking, even with the presence of state space
reduction techniques, to prove the properties of multi-
agent systems, except in the case of a small number of
agents. The results of the experiments imply that explicit
state model checking alone is not feasible in industrial-
size verification applications. The swarm size that can be
used in correctness proofs will inherently depend on the
amount of memory and time available.

To overcome the limitations of explicit state model
checking, the future challenge is applying combined
proof techniques, particularly induction-based proof
schemata. If the swarm could be partitioned into
tractable segments that maintain the abstract interface
specification (the segment’s invariant), explicit state
model checking could be used to verify the behaviour
segment-wise. The verified segment could then be used
as a base case for induction argument.

For the induction step, one has to prove that if
some composition of segments satisfies the verification
conditions, then the condition will remain satisfied when
the considered composition is composed with any other
segment proved to be correct.
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Robotiparvede ilmneva käitumise mudelkontroll

Silver Juurik ja Jüri Vain

On käsitletud ilmutatud olekuruumiga mudelkontrolli meetodi skaleeruvuse probleemi robotiparve hajuskoor-
dinatsiooni algoritmi näitel. On analüüsitud kolme mudelkontrollis kasutatavat olekuruumi kahandamise tehnikat:
olekuvektori kokkusurumine, bittvektori paisksalvestus ja sümmeetria reduktsioon. Nimetatud meetodite analüüsi
tulemused lubavad väita, et ilmutatud olekuruumiga mudelkontrolli meetod ei sobi üldjuhul suurte multiagent-
süsteemide ilmneva käitumise omaduste tõestamiseks, lähtudes üksikagentide käitumismudelitest. Artiklis on välja
toodud olekuruumi redutseerimise tehnikate puudused, mis ilmnesid dünaamilise koristusalgoritmi verifitseerimisel.


