Group actions, orbit spaces, and noncommutative deformation theory

Arvid Siqveland

Buskerud University College, PoBox 235, 3603 Kongsberg, Norway; arvid.siqveland@hibu.no

Received 14 April 2009, accepted 21 October 2009

Abstract. Consider the action of a group \(G \) on an ordinary commutative \(k \)-variety \(X = \text{Spec}(A) \). In this note we define the category of \(A \)-\(G \)-modules and their deformation theory. We then prove that this deformation theory is equivalent to the deformation theory of modules over the noncommutative \(k \)-algebra \(A[G] = A \sharp G \). The classification of orbits can then be studied over a commutative ring, and we give an example of this on surface cyclic singularities.

Key words: \(A \)-\(G \) module, noncommutative deformation theory, noncommutative blowup, cyclic surface singularities, orbit closures, swarm of modules, \(r \)-pointed artinian \(k \)-algebras, noncommutative deformation functor, Generalized Matric Massey Products (GMMP), McKay correspondence.

1. INTRODUCTION

Consider the action of a group \(G \) on an ordinary commutative \(k \)-variety \(X = \text{Spec}(A) \). We define the category of \(A \)-\(G \)-modules, Definition 2.1, and their deformation theory. We then prove that this deformation theory is equivalent to the deformation theory of modules over the noncommutative \(k \)-algebra \(A[G] = A \sharp G \). Thus the noncommutative moduli of the one-sided \(A[G] \)-modules can be computed as the noncommutative moduli of \(A \)-modules with \(A \) commutative, invariant under the (dual) action of the group \(G \), which simplify the computations significantly. The orbit closure of \(x \in X \) corresponds to an \(A[G] \)-module \(M_x = A / \mathfrak{a}_x \), so that the classification of closures of orbits can be studied locally by deformation theory of \(M_x \) as an \(A \)-\(G \)-module. Finally, we work through an example of the noncommutative blowup of cyclic surface singularities.

2. MODULES WITH GROUP ACTIONS

Let \(k \) be an algebraically closed field of characteristic 0. Let \(G \) be a finite dimensional reductive algebraic group acting on an affine scheme \(X = \text{Spec}(A) \) a finitely generated (commutative) \(k \)-algebra. Let \(\mathfrak{a}_x \) be the ideal of the closure of the orbit of \(x \) and let \(G \to \text{Aut}_k(A) \) sending \(g \) to \(\nabla_g \) be the induced action of \(G \) on \(A \). Then, as the ideal \(\mathfrak{a}_x \) is invariant under the action of \(G \) on \(A \), we get an induced action on \(A / \mathfrak{a}_x \). The skew group algebra over \(A \) is denoted \(A[G] \). It consists of all formal sums \(\sum_{g \in G} a_g g \) with product defined by

\[
(a_1g_1)(a_2g_2) = a_1 \nabla_{g_1}(a_2)g_1g_2.
\]

For later use notice that this definition extends the definition of the group algebra over \(k \), \(k[G] \). Now, the action of \(A[G] \) on \(M_x \) given by \((ag)m = a \nabla_g(m) \) defines \(M_x \) as an \(A[G] \)-module because
((a_1g_1)(a_2g_2))m = (a_1\nabla_{g_1}(a_2)g_1g_2)m = a_1\nabla_{g_1}(a_2)\nabla_{g_1g_2}(m) \\
 = a_1\nabla_{g_1}(a_2\nabla_{g_2}(m)) = a_1g_1((a_2g_2)m).

Thus the classification of orbits is the classification of the corresponding $A[G]$-modules M. The main issue of this section is the following definition and the lemma proved by the argument above:

Definition 2.1. An A-G-module is an A module with a G-action such that the two actions commute, that is

$$\nabla_g(am) = \nabla_g(a)\nabla_g(m).$$

Lemma 2.1. The category of A-G-modules and the category of $A[G]$-modules are equivalent.

3. DEFORMATION THEORY

For A a not necessarily commutative k-algebra, $V = \{V_i\}_{i=1}^r$ a swarm of right A-modules (which means that $\dim_k \operatorname{Ext}_A^i(V_i,V_j) < \infty$ for $1 \leq i, j \leq r$), there exists a well-known deformation theory, see [3]. Let a_r be the category of r-pointed artinian k-algebras. It consists of the commutative diagrams

$$
\begin{array}{ccc}
k^r & \longrightarrow & R \\
\text{Id} & \downarrow & \rho \\
k^r & \longrightarrow & k^r
\end{array}
$$

such that $\operatorname{rad}(R) = \ker(\rho)$ fulfills $\operatorname{rad}(R)^n = 0$ for some n. Generalizing the commutative case, we set \hat{a}_r equal to the category of complete r-pointed k-algebras \hat{R} such that $\hat{R}/\operatorname{rad}(\hat{R})^n$ is in a_r for all n. Letting $R_{ij} = e_i R e_j$, it is easy to see that \hat{R} is isomorphic to the matrix algebra (R_{ij}). The noncommutative deformation functor $\operatorname{Def}_V : a_r \rightarrow \text{Sets}$ is given by

$$\operatorname{Def}_V(R) = \{R \otimes_k A^{op}-modules V_R | V_R \cong_R (R_{ij} \otimes_k V_j), k_i \otimes_R V_R \cong V_i\}/ \cong.$$

Let $V_R \in \operatorname{Def}_V(R)$. The left R-module structure is the trivial one, and the right A-module structure is given by the morphisms $\sigma_A^R : V_i \rightarrow R_{ij} \otimes_k V_j$. As in the commutative case, an $(r$-pointed$)$ morphism $\phi : S \rightarrow R$ is small if $\ker(\phi) \cdot \operatorname{rad}(S) = \operatorname{rad}(S) \cdot \ker(\phi) = 0$, and for such morphisms, lifting the σ_A^R directly to S, the associativity condition gives the obstruction class $o(\phi, V_R) = (\sigma^S_{ab} - \sigma^S_{ac} \sigma^S_{cb}) \in I \otimes_k \operatorname{HH}^2(A, \operatorname{Hom}_k(V_i, V_j))$ where $I = (I_{ij}) = \ker(\phi)$, such that V_R can be lifted to V_S if and only if $o(V_R, \phi) = 0$, see [3] or [1] for details and complete proofs. Obviously, computations are much easier if A is a commutative k-algebra. This is possible to achieve when working with G-actions and orbit spaces. For a family $V = \{V_i\}_{i=1}^r$ of A-G-modules, we put

$$\operatorname{Def}_V^G(R) = \{V_R \in \operatorname{Def}_V(R) | \exists A - G$-structure $V : G \rightarrow \operatorname{End}(V_R)\} \subseteq \operatorname{Def}_V(R).$$

In [2,3] Laudal constructs the local formal moduli of A-modules. In [5,6] applications in the commutative case are given, and in [7] an easy noncommutative example is worked through. In these cases we start with the k-algebra $k[\varepsilon] = k[\varepsilon]/\varepsilon^2$ and use the tangent space

$$\operatorname{Def}_V(k[\varepsilon]) \cong \{\operatorname{HH}^1(A, \operatorname{Hom}_k(V_i, V_j))\} \cong \operatorname{Ext}_A^1(M,M)$$

as dual basis for the local formal moduli \hat{H}. The relations among the base elements are given by the obstruction space

$$\operatorname{HH}^2(A, \operatorname{Hom}_k(V_i, V_j)) \cong (\operatorname{Ext}_A^2(V_i, V_j)).$$
4. GENERALIZED MATRIX MASSEY PRODUCTS (GMMP)

Let \(\{V_i\}_{i=1}^r \) be a given swarm of \(A \)-modules. For each \(i \), choose free resolutions \(0 \leftarrow V_i \xrightarrow{d_i} L_{i,0} \xrightarrow{d_i} L_{i,1} \leftarrow L_{i,2} \leftarrow \cdots \). We write

\[
L_i = \begin{pmatrix}
L_{i,0} & 0 & \cdots & 0 \\
0 & L_{i,1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & L_{i,r}
\end{pmatrix}
\]

and we can prove Lemma 4.1 following the proof in [6] step by step:

Lemma 4.1. Let \(V_S \in \text{Def}_V(S) \) and let \(\phi : R \to S \) be a small surjection. Then there exists a resolution \(L^S = (S \otimes_k L_\cdot, d^S) \) lifting the complex \(L_\cdot \), and to give a lifting \(V_R \) of \(V_S \) is equivalent to lift the complex \(L^S \) to \(L^R \).

Proof. Generalized from the commutative case, \(M_R \cong_R (R_{ij} \otimes_k M_j) \) is equivalent with \(M_R \) \(R \)-flat. Using this, and tensoring the sequence \(0 \to I \to R \to S \to 0 \) with \(M_R \) over \(R \), gives the sequence \(0 \to I \otimes_k M \to M_R \to M_S \to 0 \). Ordinary diagram chasing then proves that the resolution of \(M_S \) can be lifted to an \(R \)-complex \(L^R \) given the resolution \(L^S \) of \(M_S \). Conversely, given a lifting \(L^R \) of the complex \(L^S \) of \(M_S \), the long exact sequence proves that this complex is a resolution, and that \(M_R = H^0(L^R) \) is a lifting of \(M_S \).

If \(M \) is an \(A \to G \) module where \(G \) acts rationally on \(A \) and \(M \) is a rational \(G \)-module, finitely generated as an \(A \)-module, then an \(A \)-free (projective) resolution of \(M \) can be lifted to an \(A \to G \)-free resolution, that is a commutative diagram

\[
\begin{array}{cccccccc}
0 & \leftarrow & V & \leftarrow & A^{n_0} & \leftarrow & A^{n_1} & \leftarrow & A^{n_2} & \leftarrow & \cdots \\
\downarrow \nu_{x} & & \downarrow \nu_{x,0} & & \downarrow \nu_{x,1} & & \downarrow \nu_{x,2} & & & \\
0 & \leftarrow & V & \leftarrow & A^{m_0} & \leftarrow & A^{m_1} & \leftarrow & A^{m_2} & \leftarrow & \cdots \\
\end{array}
\]

This proves that Lemma 4.1 is a particular case of the same lemma with \(\text{Def}_V(S) \) replaced by \(\text{Def}_V^G(S) \). In [7] we give the definition of GMMP. The tangent space of the deformation functor is \(\text{Def}_V^G(E) \cong (\text{Ext}^1_{A \to G}(V_i, V_j)) \), where \(E \) is the noncommutative ring of dual numbers, i.e. \(E = k < t_{ij} > / (t_{ij})^2 \). For computations we note that when \(G \) is reductive and finite dimensional, \(\text{Hom}_{A \to G}(V_i, V_j) \cong \text{Hom}_A(V_i, V_j)^G \) and \(\text{Ext}^1_{A \to G}(V_i, V_j) \cong \text{Ext}^1_A(V_i, V_j)^G \), \(G \) acting by conjugation. Given a small surjection \(\phi : R \to S \), with kernel \(I = (I_{ij}) \), lift \(d^S \) on \(S \otimes_k L \) to \(d^R \) on \(R \otimes_k L \) in the obvious way. Then \(o(\phi, V_S) = \{ d^R_i d^R_{i-1} \}_{i \geq 1} \in (I_{ij} \otimes_k \text{Ext}^2_{A \to G}(V_i, V_j)) \). By the definition of GMMP in [7], these can be read out of the coefficients of a basis in the obstruction space above.

5. THE MCKAY CORRESPONDENCE

Let

\[
G = \mathbb{Z}_2 = \left< \begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix} \right> = < \tau >
\]

act on \(A^2_F \) by \(\tau(a, b) = (-a, -b) \). Our goal is to classify the \(G \)-orbits, and to find a compactification \(M_G \leftarrow P^2_C \) of the orbit space \(M_G \). The existing partial solution is

\[
M_G = \text{Spec}(k[x^2, xy, y^2]) = \text{Spec}(A^G), \ A = k[x, y].
\]
This is an orbit space, but not moduli. Consider the point \(P = (a, b) = (\sqrt{w}, t \sqrt{w}), \ w \neq 0 \). Then
\[
o(P) = \{(\sqrt{w}, t \sqrt{w}), (-\sqrt{w}, -t \sqrt{w})\} = Z(I_t),
\]
where \(I_t = (x^2 - w, y - tx) \). We compute the local formal moduli of the \(A-G \)-module \(M_t = A/I_t \) from the diagram
\[
\begin{array}{cccc}
0 & \rightarrow & A/I_t & \rightarrow & A^{n_1} & \rightarrow & A^{n_2} & \rightarrow & \cdots \\
& & & & \phi & \equiv 0 & & & \\
& & & & & A/I_t & & & \\
\end{array}
\]
where the upper row is a resolution, we see that in general, \(\text{Ext}^1_{A-G}(M_t, I_t^2, A/I_t) \) with the action of \(G \) given by conjugation, that is the composition given in the sequence
\[
I_t \xrightarrow{\varphi} I_t \xrightarrow{\phi} A/I_t \xrightarrow{\varphi^{-1}} A/I_t.
\]
We get
\[
(x^2 - w, y - tx) \xrightarrow{\varphi} (x^2 - w, y - tx) \xrightarrow{\phi} k[x, y]/I_t \xrightarrow{\varphi^{-1}} k[x, y]/I_t
\]
so that \(\phi = (\alpha, \beta x) = \alpha(1, 0) + \beta(0, x) \) is invariant under the action of \(G \). Writing this up in complex form, we get
\[
\begin{array}{cccc}
0 & \rightarrow & M_t & \rightarrow & A^{d_0} & \rightarrow & A^{d_1} & \rightarrow & A \rightarrow 0 \\
& & \xi^1 \rightarrow & \xi^1 \rightarrow & A & \rightarrow & A & \rightarrow & 0 \\
0 & \rightarrow & M_t & \rightarrow & A^{d_0} & \rightarrow & A^{d_1} & \rightarrow & A \rightarrow 0 \\
& & \xi^1 \rightarrow & \xi^1 \rightarrow & A & \rightarrow & A & \rightarrow & 0 \\
\end{array}
\]

\[
d_0 = (x^2 - w y - tx), \ d_1 = \left(\frac{y - tx}{w - x^2} \right), \ \xi^1 = (1, 0), \ \xi^2 = (0, x), \ \xi^2 = \left(\begin{array}{c} 0 \\ -1 \end{array} \right), \ \xi^2 = \left(\begin{array}{c} x \\ 0 \end{array} \right).
\]

We find \(\xi^1 \xi^2 = \xi^1 \xi^2 = \xi^1 \xi^2 + \xi^1 \xi^2 = 0 \), which means that all cup-products are identically zero. Thus \(H_M = k[[t_1, t_2]] \) with algebraization \(H_M = k[t_1, t_2] \). Because the particular point \(0 = (0, 0) \) corresponds to \(M_0 = k[x,y]/(x,y) \) with \(\text{Ext}^1_{A-G}(M_0, M_0) = 0 \), we understand that \(M_0 \) is a singular point, so that the modulus is \(M_G = (A^2 - \{0\}) \cup \{pt\} \). At least in this case, resolving the singularity is a process of compactifying. Given a family \(V = \{V_i\}_{i=1}^n \) of simple \(A \)-modules, an \(A \)-module \(E \) with composition series \(E = E_0 \supset E_1 \supset \cdots \supset E_i \supset E_{i-1} \supset \cdots \supset E_r \supset 0 \), where \(E_k/E_{k-1} = V_{k_i} \), is called an iterated extension of the family \(V \), and the graph \(\Gamma(E) \) of \(E \) (the representation type) is the graph with nodes in correspondence with \(V \) and arrows \(\rho_{i, j} \) connecting the nodes \(V_i \) and \(V_{i+1} \), identifying arrows if the corresponding extensions are equivalent. In [3] Laudal solves the problem of classifying all indecomposable modules \(E \) with fixed extension graph \(\Gamma \). He proves that for every \(E \) there exists a morphism \(\phi : H(V) \rightarrow k[\Gamma] \) such that \(E \cong M \hat{\otimes}_k k[\Gamma] \), where \(M \) is the versal family, resulting in a noncommutative scheme \(\text{Ind}(\Gamma) \).

In [4], he then proves that the set \(\text{Simp}_n(A) \) of \(n \)-dimensional simple representations of \(A \) with the Jacobson topology has a natural scheme structure. He also proves that when \(\Gamma \) is a representation graph of dimension \(n = \sum_{V \in \Gamma} \dim_k V \), then the set \(\text{Simp}(\Gamma) = \text{Simp}_n(A) \cup \text{Ind}(\Gamma) \) has a natural scheme structure with the Jacobson topology, which is a compactification of \(\text{Simp}_n(A) \). In our present example, we let \(\Gamma \) be the representation type of the regular representation \(k[\Gamma] \). We construct the composition series \(k[\Gamma] \cong k[\tau]/(\tau^2 - 1) \supset (\tau - 1)/(\tau^2 - 1) \supset 0 \). Thus we get \(V_0 = k[\tau]/(\tau - 1) \cong k, V_1 = (\tau - 1)/(\tau^2 - 1) \cong k \) and the action \(\nabla^i_\tau \) of \(\tau \) on \(V_i \) is given by \(\nabla^i_\tau = (-1)^i \). From the sequence \((x, y) \overset{\varphi}{\longrightarrow} (x, y) \overset{\phi}{\longrightarrow} V_i \overset{\varphi^{-1}}{\longrightarrow} V_i \)
we immediately see that \(\text{Ext}^1_{A - G}(V_i, V_j) = \alpha(1,0) + \beta(0,1) \) when \(i \neq j \), 0 if \(i = j \). Writing up the corresponding diagram and multiplying as in the previous example, we get

\[
H(V_1, V_2) = \begin{pmatrix}
\begin{pmatrix}
< t_{21}(1), t_{21}(2) > & < t_{12}(1), t_{12}(2) > \\
\end{pmatrix} \\
\begin{pmatrix}
t_{12}(1)t_{21}(2) - t_{12}(2)t_{21}(1) \\
t_{21}(1)t_{12}(2) - t_{21}(2)t_{12}(1)
\end{pmatrix}
\end{pmatrix}.
\]

The versal family is given as the cokernel of the morphism

\[
\Psi: \left(\begin{array}{cc}
A^2 & 0 \\
0 & A^2
\end{array} \right) \rightarrow \left(\begin{array}{cc}
H_{11} \otimes A & H_{12} \otimes A \\
H_{21} \otimes A & H_{22} \otimes A
\end{array} \right),
\]

\[
\Psi = \begin{pmatrix}
1 \otimes (x,y) & t_{12}(1) \otimes (1,0) + t_{12}(2) \otimes (0,1) \\
t_{21}(1) \otimes (1,0) + t_{21}(2) \otimes (0,1) & 1 \otimes (x,y)
\end{pmatrix}.
\]

Now, as \(k[\Gamma] = \begin{pmatrix} k & k \\ 0 & k \end{pmatrix} \), \(\phi : H \rightarrow k[\Gamma] \) sends both \(t_{21}(1) \) and \(t_{21}(2) \) to 0. The isomorphism classes of indecomposable \(A[G] \)-modules with representation type \(\Gamma \) are thus given by

\[
V_i = \left(\begin{array}{ccc}
x & y & 0 & 0 \\
-1 & -t & x & y
\end{array} \right),
\]

\[
V_\infty = \left(\begin{array}{ccc}
x & y & 0 & 0 \\
0 & -1 & x & y
\end{array} \right).
\]

The inherited group action is \(\nabla : \left(\begin{array}{c}
1 \\
0 \\
-1
\end{array} \right) \) on \(k^2 \). To find \(\text{Simp}(\Gamma) \), we start by computing the local formal moduli of the (worst) module \(V_i \), following the algorithm in [2]. We find

\[
\text{Ext}^1_{A - G}(V_i, V_i) = \text{Der}_k(A, \text{End}_k(V_i))/\text{Triv} = \left\{ \delta \mid \delta(x) = \begin{pmatrix} 0 & w \\ 0 & 0 \end{pmatrix}, \delta(y) = \begin{pmatrix} 0 & w(t + v) \\ v & 0 \end{pmatrix} \right\}
\]

by using (in particular) the fact that \(xy = yx \) in \(A \). Then \(H(V_i)^\text{com} = k[v, w] \) with versal family \(\begin{pmatrix} x & y & -w & -w(t + v) \\ 1 & -(t + v) & x & y \end{pmatrix} \), computed by again using the fact that \(xy = yx \) in \(A \). While \(w = 0 \) gives the indecomposable module \(V_{x+t} \), \(w \neq 0 \) gives a simple two-dimensional \(A-G \)-module given by \(x^2 = w, y^2 = (t + v)^2w \). This gives an embedding \(A^2 = k[s_0, s_1, s_2]/(s_0s_1 - s_2^2) = k[x^2, xy, y^2] \hookrightarrow k[v, w] \) inducing the morphism \(\text{Simp}_\Gamma \rightarrow \text{Spec}(A_G) \) which is the ordinary blowup of the singular point. The exceptional fibre is \(\left(\begin{array}{ccc}
x & y & 0 & 0 \\
-1 & -t & x & y
\end{array} \right) \cup V_\infty \cong \mathbb{P}^1 \).

REFERENCES

Rühmatoimed, orbiitruumid ja mittekommutatiivne deformatsiooniteooria

Arvid Siqveland