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Abstract. In nonclassical mechanics it is natural to deal with the problem of the propagation of nonlinear waves in solids with
different internal structural scales (Engelbrecht, J., Pastrone, F., Braun, M., and Berezovski, A. Hierarchy of waves in nonclassical
materials. In Universality of Nonclassical Nonlinearity (Delsanto, P. P., ed.). Springer, 2007, 29–48). The choice of suitable
microstrain functions of the microdisplacements, of their time derivatives as strain velocities, allows us to obtain the field equations
via a variational principle (see Pastrone, F., Cermelli, P., and Porubov, A. V. Nonlinear waves in 1-D solids with microsctructure.
Mater. Phys. Mech., 2004, 7, 9–16; Casasso, A. and Pastrone, F. Wave propagation in solids with vectorial microstructures.
Wave Motion, doi: 10.1016/j.wavemoti.2009.12.006; Porubov, A. V., Pastrone, F., and Maugin, G. A. Selection of two-dimensional
nonlinear strain waves in micro-structured media. C. R. Acad. Sci. Paris, 2004, Ser. I 337, 513–518) in three different cases:
one-dimensional solids with two different microscales, two-dimensional solids with microstructures, and plane granular media. In
all cases the hierarchical structure of equations due to the scales in materials is evident.
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1. INTRODUCTION

Recently, the problem of complexity revealed its importance in continuum mechanics and, in particular,
in nonlinearly elastic structures. The problem of scale-depending phenomena has become more and more
relevant and has been given different names according to the different microscales used. ‘Mesomechanics’,
‘nanomechanics’, and ‘microstructure theory’ are the terms widely employed, sometimes with a kind of
overlapping of models. The material continuum which exhibits such a structure is called a complex system.
The influence of micro(or meso-, or nano-)structures on the behaviour of the macrostructures is of great
importance in applications in very different fields: fluids with bubbles, microcrack distribution in solids,
crystal fluids, dislocations and disclinations, granular solids, porous media, and so on. In many cases the
mathematical theory does not provide suggestions on how to perform experiments in order to exhibit the
existence, consistency, and influence of the microstructure over the macrobody. In this sense we can talk
of nonclassical, nonlinear elasticity, in the sense that some of the pillars of the classical exact theory of
elasticity are relaxed. For instance, the Cauchy stress tensor is no more symmetric because of the presence of
microstructures described by additional internal degrees of freedom, which implies the presence of applied
couples in bulk and at the surface.

As extensively described in [5], the cornerstones for describing dynamic processes of microstructured
materials at intensive and high-speed deformations are the following:

(i) nonclassical theory of continua able to account for internal scales;
(ii) hierarchical structure of waves due to the scales in materials;

(iii) nonlinearities caused by large deformation and character of stress–strain relations.
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The second point mentioned above is the hierarchy of waves. The concept of hierarchy of waves was
introduced by Whitham [13]. High intensities of external forces and high deformation rates (high speeds
of deformation) dictate the need to consider nonlinearities in governing equations. One should distinguish
between geometrical (large deformation) and physical (stress–strain relation) nonlinearities (see [3]). In
terms of wave characteristics, there are many physical effects due to the microstructure and its possible
structural changes in the wave field. In addition, the influence of nonlinearities causes nonadditivity of
other physical effects. Leaving aside more complicated effects like phase transition, kinetic localization
of damage, shear bands, etc., even the basic dissipative and dispersive effects are strongly influenced by
nonlinearities. There are many studies concerning the dissipative effects combined with nonlinearities.

We examine three examples where the hierarchical structure of field equations is briefly outlined.
In Section 2 we deal with one-dimensional elastic bodies with different scales of the microstructure, in
Section 3 with the more general problem of two-dimensional microstructured media, and in Section 4 with
nondissipative plane granular media.

2. ONE-DIMENSIONAL SOLIDS WITH TWO MICROSCALES

In this section we consider a one-dimensional microstructured model with two different scale levels of the
microstructure. So, instead of the two-scale elastic system containing the macro- and microstructure, we
introduce a material, which is supposed to be composed by a macrostructure, a first-level microstructure and
a second-level microstructure at a much smaller scale. The last may be interpreted as a nanostructure, to the
extent (see [2,5]).

In this model we deal with three different scalar functions: one for the macrostructure and two
for the microstructure, one for each scale level. In the model under examination the body is a one-
dimensional manifold, so we consider the material coordinates x and t, and the functions v = v(x, t) for
the macrostructure, ϕ = ϕ(x, t) and ψ = ψ(x, t), respectively, for the first and the second scale level.

The macrobody is supposed to be elastic. The first- and second-level microstructures satisfy the same
generalized elasticity hypothesis as well, such that we can assume the existence of an internal strain energy.

In general, the strain energy function in elastic solids with microstructures is assumed to be a function
of the vector fields and their gradients [6]. Because of objectivity, we can write this function as a function
of the scalar components only, namely,

W = W (v,vx,ϕ,ϕx,ψ,ψx,x).

The kinetic energy is a quadratic form in vt , ϕt , ψt :

K =
1
2
(ρv2

t + I1ϕ2
t + I2ψ2

t ),

where ρ is the one-dimensional mass density and, since we deal with a Lagrangian formulation and the body
is supposed to be homogeneous, ρ is constant, being the density in the reference configuration; I1 and I2 are
the inertia terms connected with the two different scale levels of the microstructure. If we consider model
without dissipation, the field equations take the following form, as proved in [2]:





ρvtt =
(

∂W
∂vx

)

x
− ∂W

∂v
,

I1ϕtt =
(

∂W
∂ϕx

)

x
− ∂W

∂ϕ
,

I2ψtt =
(

∂W
∂ψx

)

x
− ∂W

∂ψ
,

(1)
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where v is the displacement field, and the subscripts mean derivatives with respect to time t or to the spatial
coordinate x.

The particular choice of the strain energy function W gives rise to different nonlinear models; in this
paper we consider the following form:

W =
1
2

αv2
x +

1
3

βv3
x −A1ϕvx +

1
2

B1ϕ2 +
1
2

C1ϕ2
x −A2ϕxψ +

1
2

B2ψ2 +
1
2

C2ψ2
x .

This choice is the generalization of the strain energy function for nonlinear elastic solids with one micro-
structure level to our case, where the introduction of the cubic term v3

x means that the behaviour of the matrix
is nonlinear.

To obtain the governing equation in dimensionless form, it is necessary to introduce some parameters
and constants. So we pose

C1 = C∗1 l2
1 , I1 = ρl2

1I∗1 , A1 = l1A∗1 (2)

for the first level of the microstructure and

C2 = C∗2 l2
2 , I2 = ρl2

2I∗2 , A2 = l2A∗2 (3)

for the second scale level. Values l1 and l2 represent the size of the microstructure elements. Then we
introduce two different parameters δi, i = 1,2, characterizing the ratio between the microstructure and the
wavelength, and ε accounting for elastic strain; in detail we have

δ1 =
(

l1
L

)2

, δ2 =
(

l2
L

)2

, ε =
v0

L
, (4)

where L is the wavelength and v0 the intensity of the initial excitation. Field equations can be written as




ρvtt = αvxx +
(
βv2

x
)

x−A1ϕx,

I1ϕtt = C1ϕxx +A1vx−B1ϕ−A2ψx,

I2ψtt = C2ψxx +A2ϕx−B2ψ ,

(5)

where α , β and Ai, Bi, Ci (i = 1,2) denote material constants.
Introducing the macrostrain ν = vx, the dimensionless variables

u =
ν
v0

, X =
x
L

, T =
c0

L
t,

and substituting the parameters (2), (3), and (4) into the previous system, we get the dimensionless equations




uT T =
α

ρc2
0

uXX +
βv0

ρc2
0

(
u2)

XX
− A1

v0ρc2
0

ϕXX ,

ϕ =
A1v0

B1
u− A∗2

√
δ2

B1
ψX +

δ1

B1

[
C∗1ϕXX −ρI∗1 c2

0ϕT T

]
,

ψ =
A∗2
√

δ2

B2
ϕX +

δ2

B2

[
C∗2ψXX −ρI∗2 c2

0ψT T

]
.

(6)

The slaving principle [3] can now be used. This procedure allows us to write one function in terms of
the other; in this way we can obtain the governing equation that depends only on the function u(x, t). To
this end, we determine the variable ψ in terms of ϕ and its derivatives from (6)3. Then Eq. (6)2 is used to
express ϕ in terms of derivatives of u. This expression is finally inserted into Eq. (6)1, obtaining a single
differential equation for u.
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First, from (6)3 we obtain

ψ =
A∗2
√

δ2

B2
ϕX +

A∗2
√

δ2δ2

B2
2

[
C∗2ϕXXX −ρI∗2 c2

0ϕXT T

]

and inserting this expression in (6)2, we have

ϕ =
A1v0

B1
u+

δ1A1v0

B2
1

[
C∗1uXX −ρI∗1 c2

0uT T

]− δ 2
2 A1(A∗2)

2v0

B2
1B2

2

[
C∗2uXXXX −ρI∗2 c2

0uXXT T

]
.

Finally, substituting in (6)1, we obtain the partial differential equation

uT T =
(

αB1−A2
1

ρc2
0B1

)
uXX +

βv0

ρc2
0
(u2)XX +

δ1A2
1

ρc2
0B2

1

[
ρI∗1 c2

0uT T −C∗1uXX

]
XX

− δ 2
2 A2

1(A
∗
2)

2

ρc2
0B2

1B2
2

[
ρI∗2 c2

0uT T −C∗2uXX

]
XXXX

. (7)

Equation (7) can be rewritten as

uT T +α1uXX +α2(u2)XX +(α3uXX +α4uT T )
XX

+(α5uXX +α6uT T )
XXXX

= 0, (8)

where we have defined

α1 =−αB1−A2
1

ρc2
0B1

, α2 =−βv0

ρc2
0
, α3 =

δ1A2
1C∗1

ρc2
0B2

1
,

α4 =−δ1A2
1I∗1

B2
1

, α5 =−δ 2
2 A2

1(A
∗
2)

2C∗2
ρc2

0B2
1B2

2
, α6 =

δ 2
2 A2

1(A
∗
2)

2I∗2
B2

1B2
2

.

Equation (8) is the hierarchical equation in terms of u, where the two different levels of the micro-
structure are reflected in special wave operators.

We have found a sixth-order partial differential equation that is hardly to be solved explicitly. However,
in a forthcoming paper, some exact solutions will be given to an ODE corresponding to the PDE mentioned,
when Eq. (7) is reformulated in terms of the phase variable z = x±Vt, where V is the velocity of propagation

(V 2 +α1)u(II)+α2(u2)(II)+
(
α3 +V 2α4

)
u(IV)+

(
α5 +V 2α6

)
u(VI) = 0.

If the nonlinearity is neglected, (7), or (8), are equivalent to eq. (3.57) of [5]. On the other hand, we can
assume nonlinearity also in the microstructures, hence add in the strain energy function W two terms, B3ϕ3

x
and C3ψ3

x . The governing equations (1), (5) will contain now terms B3ϕxϕxx and C3ψxψxx.

3. TWO-DIMENSIONAL MICROSTRUCTURED MEDIA

In this section we refer mainly to [12], where the interest was in weak transverse variation, but we obtain a
result that we can define ‘complementary’.

One of the most important problems in a microstructured medium is to define the values of the para-
meters of a microstructure. One possibility is to evaluate the parameters of strain waves propagating in
such a medium. Indeed, the amplitude and velocity of the wave depend upon the parameters of the micro-
structure. Usually wave propagation and the shape of the waves depend on suitable balance conditions
among nonlinearity, dispersion, dissipation, and energy input. The hierarchical structure of the governing
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equations can help in detecting the relevance of the various parameters, splitting the contribution of the
different levels of the microstructures. The balances define the shape of the wave.

The governing equations are obtained using the model developed in [10]. The fundamental strains are
given by the Cauchy–Green macrostrain tensor, the distortion tensor, and the microdisplacement gradient
tensor. The macromotion is supposed to be small but finite, and the Murnaghan model is used to describe the
so-called physical nonlinearity in the expansion of free or potential energy. The microstructure is assumed
sufficiently weak to be considered in the linear approximation. A dissipation and an energy input are
introduced through the additive linear terms in all three tensors, the simplest extension of the Hooke law to
viscoelastic media.

Let us denote displacements along the x- and y-axes by U (x,y, t), V (x,y, t), respectively. Then a
scale W is introduced as for longitudinal strains v = Ux, and W ¿ 1 that is natural for the Murnaghan
materials. The scale for another strain w = Vy is chosen equal to κW . Also L/c0 is used as a scale for
time t, c2

0 = (λ + 2µ)/ρ is a characteristic velocity, λ , µ are the Lame coefficients, ρ is the macrodensity.
We also introduce a typical size p of a microstructure element and the dissipation parameter d having the
dimension of a length. Three positive dimensionless parameters will be used in the following: ε = W ¿ 1,
accounting for elastic strains; δ = p2/L2 ¿ 1, characterizing the ratio between the microstructure size and
the wavelength; γ = d/L, characterizing the influence of dissipation.

Now we are interested in longitudinal waves. We can assume w≈ 0, hence in eqs (1) and (2) in [12] the
terms in w disappear and, if we assume that nonlinearity, dispersion, and dissipation are taken into account,
we have

vtt − vxx +δα(vxx− vtt)xx + γδβ (vtt − vxx)xxt + εα1(v2)xx = 0,

where the nonlinear term coefficient α1 depends upon the Murnaghan moduli.
We can use an asymptotic approximation

v = v0(x, t)+ γv1(x, t)+ . . .

valid for a small dissipation, and obtain two equations

v0,tt − v0,xx +δα(v0,xx− v0,tt)xx + εα1(v2
0)xx = 0,

v1,tt − v1,xx +δα(v1,xx− v1,tt)xx +2εα1(v0v1)xx + γδβ (v0,tt − v0,xx)txx = 0. (9)

Introducing the variable θ = x− t, the slow variable T = εγt, and the phase variable ζ , such that ζx = 1,
ζ t = c(T ), we obtain

cv0,ζζ +α1(v2
0)ζζ +δαv0,ζ ζ ζ ζ = 0

that admits a solitary wave solution with slowly varying parameters (see [10]).
Equation (9) reads

cv1,ζ ζ +δαβv0,ζζ ζ ζ ζ = 0,

namely, a fifth-order linear differential equation for v1, much simpler than eq. (7) in [10]. It seems feasible
to obtain similar results as in [10], but we stop here our analysis.

4. NONDISSIPATIVE PLANE GRANULAR MEDIA

For simplicity sake, as explained in [1], we shall use the notation X1 = x, X2 = y, x1 = u, x2 = v, hence we
consider the vector r = r(x,y, t) = u(x,y, t)e1 +v(x,y, t)e2 for the macrostructure and, for the microstructure,
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the function θ = θ(x,y, t) that represents the angle of rotation of the particle with respect to the fixed basis.
In the following the lower indices x,y, t will denote differentiation. The kinetic energy density reads

T =
1
2

[
ρ

(
u2

t + v2
t
)
+ Iθ 2

t
]
.

The strain energy density is chosen in the form

W =
1
2

α
(
u2

x + v2
x
)
+

1
2

β
(
u2

y + v2
y
)
+

1
6

γ(u3
x +u3

y + v3
x + v3

y)

+
1
2

γ(u2
xvx +u2

yvy + v2
xux + v2

yuy)−Aθ (ux +uy + vx + vy)

+
1
2

Bθ 2 +
1
2

C
(
θ 2

x +θ 2
y
)
+

1
3

D
(
θ 3

x +θ 3
y
)
.

We assume that the dissipation is negligible and calculate the Lagrange equations





ρutt = αuxx +βuyy−A(θx +θy)+
1
2

γ
[[

(ux + vx)2
]

x +
[
(uy + vy)2

]
y

]
,

ρvtt = αvxx +βvyy−A(θx +θy)+
1
2

γ
[[

(ux + vx)2
]

x +
[
(uy + vy)2

]
y

]
,

Iθtt = C(θxx +θyy)+D
[
(θ 2

x )x +(θ 2
y )y

]
+A(ux +uy + vx + vy)−Bθ .

We introduce a new variable w = u+v. Therefore, we add the first two equations of the previous system
and get {

ρwtt = αwxx +βwyy−2A(θx +θy)+ γ
[
(w2

x)x +(w2
y)y

]
,

Iθtt = C(θxx +θyy)+D
[
(θ 2

x )x +(θ 2
y )y

]
+A(wx +wy)−Bθ .

(10)

For further analysis the dimensionless variables are introduced

W =
w
W0

, X =
x
L

, Y =
y
L

, T =
c0

L
t,

where c0, W0, L are physically meaningful constants (velocity, intensity, and wavelength of the initial
excitation). We also need a scale for the microstructure l and then two dimensionless parameters can be
introduced 




δ ∼
(

l
L

)2

characterizing the ratio between the

microstructure and the wavelength,

ε ∼
(

W0

L

)
accounting for elastic strain,

where δ has the relevant meaning of a characteristic length.
Following [10], we suppose I = ρl2I∗, C = l2C∗, D = l2D∗, where I∗ is dimensionless and C∗ and D∗

have the dimension of the stress. Then (10) yields





WT T =
1

ρc2
0
(αWXX +βWYY )− 2A

ρc2
0ε

(θX +θY )+
ε2γ
L

[
(W 2

X
)X +(W 2

Y
)Y

]
,

θT T =
1

ρc2
0I∗

[
εA
B

(WX +WY )+
δ
B

[
C∗(θXX +θYY )+

D∗

L

[
(θ 2

X
)X +(θ 2

Y
)Y

]]−θ
]
.

(11)
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If we consider the expansion in terms of the characteristic length δ : θ = θ0 +δθ1 + ... and equalize the
coefficients of the power of δ , we obtain the system

θ0 = ε
∼
θ 0=

εA
B

(WX +WY ),

θ1 = ε
∼
θ 1 +ε2 ∼

θ 2=
εA
B2

[
C∗(WXXX +WXXY +WXYY +WYYY )−ρc2

0I∗(WXT T +WY T T )
]

+
ε2A2D∗

B3L

{[
(WXX +WXY )2

]
X
+

[
(WXY +WYY )2

]
Y

}
.

Let us consider the following approximation for θ :

θ ' εA
B

(WX +WY )+
δε
B2

[
C∗(WXXX +WXXY +WXYY +WYYY )−ρc2

0I∗(WXT T +WY T T )
]
,

namely θ ∼= ε(
∼
θ 0 +

∼
θ 1). Equation (11)1 becomes

WT T =
1

ρc2
0

(
α− 2A2

B

)
WXX +

1
ρc2

0

(
β − 2A2

B

)
WYY

− 4A2

ρc2
0B

WXY +
2δA2I∗

B2 (WXX +2WXY +WYY )T T

− 2δA2C∗

ρc2
0B2 [(WXX +2WXY +WYY )XX +(WXX +2WXY +WYY )YY ].

This equation describes longitudinal wave propagation only if the movement is provided along the x-
axis. Otherwise it accounts for both the longitudinal and the shear horizontal waves. As shown in [11], we
can see that in the 1D case the wave evolution is described by the ‘Double Dispersion Equation’:

WT T = α1WXX +α2(W 2
X

)
X
+α3WXXXX +α4WXXT T ,

where α1 =
1

ρc2
0

(
α− 2A2

B

)
, α2 =

ε2γ
L

, α3 =−2δA2C∗

ρc2
0B2 , α4 =

2δA2I∗

B2 .

5. CONCLUSIONS

The field equations obtained in the previous sections can be used to study the propagation of nonlinear
waves, as done in the papers [1,4,5,9–11]. In all cases the hierarchical structures of field equations are
reflected in a possible hierarchy of waves in the sense of Whitham [13], where the influence of the different
levels of scale parameters on wave propagation is clearly seen. Even the possibility of propagation of bell-
shaped or kink-shaped solitons depends on the balance of suitable parameters related to the different scales
of macro- and microstructures. The use of the ‘slaving principle’, asymptotic approximations, and, at least
in one case, the possibility of reducing the main field equation obtained via the previous methods to an ODE
(see [10]) which can be integrated allow us to obtain further information about the wave profiles and other
properties depending on the different scales. We can guess that in many other cases of physical interest
this approach can be fruitfully used and our purpose is to develop further this kind of analysis, where the
fundamental model of solids with vectorial microstructures as developed in [2,7,8] plays an important role.
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Hierarhilised struktuurid mikroskalaarsetes keerukates tahkistes

Franco Pastrone

Mitteklassikalises mehaanikas on tavapärane käsitleda mittelineaarsete lainete levi erinevate sisemiste
struktuursete skaaladega tahkistes [5]. Mikrodeformatsiooni funktsioonide, mikrosiirde ja nende aja järgi
tuletiste kui deformatsioonikiiruste sobiv valik võimaldab variatsiooniprintsiibi abil saada välju kirjeldavad
võrrandid (vt [2,9,12]) kolmel erineval juhul: kahe erineva mikroskaalaga ühemõõtmeliste tahkiste, mikro-
struktuuridega kahemõõtmeliste tahkiste ning tasapinnalise granuleeritud keskkonna puhul. Kõikidel juhtu-
del on materjalide struktuursete skaalade mõju võrrandite hierarhilisele struktuurile ilmne.


