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Université Pierre et Marie Curie (Paris 6), Institut Jean Le Rond d’Alembert, UMR CNRS 7190, Case 162, 4 place Jussieu, 75252
Paris cedex 05, France; Gerard.Maugin@upmc.fr

Received 15 December 2009, accepted 3 February 2010

Abstract. The various methodologies exploited in the study of the propagation of phase transition fronts in crystalline substances
(inert matter) are examined and compared with a view to identifying mathematical tools useful in a scientific mechanobiological
approach to the critical problem of the growth of long bones in mammals.

Key words: mechanobiology, phase transition, nonlinear waves, solitons, long bones.

1. INTRODUCTION

On the one hand, the propagation of phase-transition
fronts is one of the main problems in materials
science [1]. On the other hand, the problem of the
evolution of the growth plate at the end of long bones
is identified as a critical problem in mechanobiology
(cf. [2]). It was inevitable that these two apparently
unrelated subject matters would somehow meet on
common research lines to the benefit of the latter as
applied mathematical tools developed for the former of
necessity find applications in the latter. This concerns
more particularly the complexity of dynamic wave
phenomena involving structured or non-structured wave
fronts, solitary waves, and dissipative structures. This
suits the celebration of the 70th anniversary of Jüri
Engelbrecht, a scientist who has devoted most of his
works to various aspects of complexity and nonlinear
wave propagation (cf. his book [3]). I met Jüri for the
first time on an occasion already devoted to nonlinear
waves (Tallinn Meeting on Nonlinear Deformation
Waves, January 1978) where I presented a paper on one
of my dearest research fields, that of the propagation
of strongly localized nonlinear waves in any of their
disguises [4]. The combined biomechanical aspect of the
present work also partakes of Jüri’s interests.

Of course, we must be conscious that absolutely
identical schemes cannot strictly apply simultaneously to
inert matter (e.g., crystals) and living matter (e.g., soft
biological tissues). Straightforwardly applied analogies
between these two fields may be misleading, and the
inherent complexity of the evolution of physiological
processes may be mistreated by our reductive simple-
mindedness. There are uses and misuses of analogies.
All this kept in mind, we present here some of these
useful analogies after delineating the various approaches
to the first problem, which they share (the Hugoniot
relation) as common results and which distinguishes one
from the others (dissipation or no dissipation, micro- or
macrodissipation).

2. VARIOUS APPROACHES TO THE PRO-
PAGATION OF PHASE-TRANSITION
FRONTS (INERT MATTER)

In a more or less recent past we have dealt in detail
with various aspects and approaches to the problem of
propagation of phase-transition fronts. In doing so we
have identified four types of approach, which would
generally lean essentially on the background and taste of
the involved scientist. We have thus:
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Type-1 approach: discrete crystal lattice, condensed-
matter physics;

Type-2 approach: continuum, thermomechanical engi-
neering;

Type-3 approach: continuum, structured front, applied
mathematics;

Type-4 approach: quasi-particle, theoretical physics.

2.1. Type-1 approach

The Type-1 approach concerns a microscopic scale
(lattice dynamics) in the absence of thermodynamic
irreversibility. This first scale, inspired by the Landau–
Ginzburg theory, although discrete to start with, deals
with nonlinear localized waves (solitonic structures:
solitary waves, soliton complexes) where nonlinearity
and dispersion (discreteness) are the main ingredients.
This approach considers a perfect lattice, so that
there is no dissipation and no effects of temperature
are involved, except perhaps in the phase-transition
parameter. Following works by Falk [5], Pouget [6],
and Maugin and Cadet [7], in passing from a lattice
to a continuous long-wavelength limit, this allows one
to readily obtain a dynamic representation of a phase
boundary (e.g, a kink) as a solitonic structure for a two-
degrees-of-freedom, but essentially one-dimensional,
system. The reason for this is that, unless one wants to
study the lateral stability of this system, the “theorem
of the flea” applies: at its scale the “flea” sees only
the first-order geometrical description of the transition
layer, hence essentially the normal direction to a
layer of constant thickness. Notice that the continuum
model obtained in this long-wavelength limit is that
of a nonlinear elastic body with first gradients of
strains taken into account but no dissipation. This long-
wave limit is admissible because the transition layer
between two phases, although thin (perhaps a few lattice
spacings), is nonetheless large enough. Numerical
simulations can be performed directly on the lattice. The
elastic potential is non-convex in general.

To exemplify this approach, one may consider a one-
dimensional (x), two-degrees-of-freedom, lattice with
transverse (main effect) and longitudinal (secondary
effect) displacements from the initial position. In the
so-called long-wave limit where the discrete dependent
variables (shear and longitudinal strains) sn and εn
vary slowly from one lattice site to the next and
can be expanded about the reference configuration
(na,0), the discrete equations yield a system of two
(nondimensionalized) coupled partial in (x, t) differential
equations (with an obvious notation for partial x and
t derivatives), which is none other than a relatively
complex system of continuum equations, where s and
ε are the shear and elongation strains, γ is a coupling
coefficient, and α is a nonlocality parameter. Parameters
cT and cL are the characteristic speeds of the linear elastic
system. This corresponds to stresses and energy density
given by

σs = σ s−mx, σε =
∂W
∂ε

, σ s =
∂W
∂ s

, m =
∂W
∂ sx

(1)
and
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1
2
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2
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x
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Equations (1)1,2 define the involved stresses and
hyperstresses present in the balance of (physical) linear
momentum for a continuum made of a nonlinear,
homogeneous elastic material with strain gradients with
both nonlinearity and strain gradients relating only to the
shear deformation. As already noticed, this apparently
complicated system still admits exact dynamic solutions
of the solitonic type. A thorough discussion of the
existence of solitary-wave-like solutions connecting two
different or equivalent minimizers (i.e., two phases)
of the potential energy was given by Maugin and
Cadet [7] to whom we refer the reader. The sixth
order energy (2) in s is sufficient to provide a
description of all possible phase transitions between
one undeformed austenitic phase and two martensitic
variants of opposite shear (in 3D the potential would
admit 24 variants for the martensite). A remarkable
fact is that such structurally complicated solutions
are shown (by computation) to satisfy the following
(temperature-independent) Hugoniot condition between
states at infinity (in practice, far away from the front) :

Hugo =
[[

W (s,εfixed)−〈σ s〉s
]]

= 0, (3)

where σ s is the shear strain without strain-gradient effect,
and W is the elastic energy with such effects similarly
neglected. Obviously, gradient effects play a significant
role only within the rapid transition zone that the strongly
localized solution represents, while outside this zone the
state is practically spatially uniform, although different
on both sides of the localized front. Here we have used
the following definitions for the jump and mean value of
any quantity a:

[[a]] = a(+∞)−a(−∞), 〈a〉=
1
2
(a(+∞)+a(−∞)).

(4)

Equation (3) is typical of the absence of dissipation
during the transition, in general a working hypothesis
that is not realistic. Furthermore, it can in fact be
rewritten as the celebrated Maxwell’s rule of equal areas.

2.2. Type-2 approach

The Type-2 approach belongs to the engineering
thermomechanical approach and relates to a macroscopic
scale, that of engineering applications. Of necessity
the progress of the phase-transition front is not only
accompanied by dissipation, but it is the second law of
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thermodynamics that constrains or directs (in the proper
sense) that progress. In this approach it is assumed
at each instant of time that the thermoelastic solution
is known by any means – analytical, but more often
than that, numerical – on both sides of the phase-
transition front considered as a singular surface Σ of
vanishing thickness, so that one can compute a driving
force acting on Σ. Further progress of Σ must not
contradict the second law of thermodynamics. The latter,
therefore, governs the local evolution of Σ which is
generally dissipative, although no microscopic details
are made explicit to justify the proposed expressions.
The approach is thermodynamic and incremental (in
total analogy with modern plasticity). All physical
mechanisms responsible for the phase transformation
are contained in the phenomenological–macroscopic
relationship given by the local criterion of progress of Σ.
Without entering details, which can be found in several
papers (Maugin and Trimarco [8]; Maugin [9,10]) and
considering from the outset the finite-strain framework,
we remind the reader that at any regular point in the
body (i.e., on both sides of Σ) we have the balance
of (physical) linear momentum and the future heat
equation written in the Piola–Kirchhoff form for a heat-
conducting thermoelastic material. In general W (F,θ)
is different on both sides of Σ , and generally non-convex
in its first argument (F is the deformation gradient)
and concave in the second one (the thermodynamic
temperature θ ). But while each phase is materially
homogeneous, the presence of Σ is a patent mark of a
loss of translational symmetry on the overall body, hence
the consideration of a global material inhomogeneity.
The field equation capturing this breaking of symmetry
is the jump relation associated with the equation of
momentum on the material manifold, i.e, what we have
called the balance of material momentum in different
works (e.g., [11]). This jump equation, together with that
for entropy, governs the phase-transition phenomenon at
Σ. If N is the unit normal to Σ oriented from the minus to
the plus side, and we define the jumps and mean values
at Σ by (compare to (4):

[[a]] = a+−a−, 〈a〉=
1
2
(a+ +a−), (5)

where a± are the uniform limits of a in approaching Σ on
its two faces along N, V is the material velocity of Σ, S is
the entropy density, θ is the thermodynamic temperature,
fΣ is the driving force acting on Σ, and bS is the quasi-
static part of the so-called Eshelby stress tensor, it is
shown that for a coherent homothermal front we have

fΣ.V = fΣV N = θΣσΣ ≥ 0, (6)

and

fΣ =−HugoPT ,

HugoPT :=N. [[bS]] .N = [[W −〈N.T〉F.N]] .
(7)

If inertia is really neglected, then we have the following
reduction (tr = trace):

HugoPT = [[W − tr(〈T〉.F)]] . (8)

In this canonical formalism the driving force fΣ
happens to be purely normal but it is constrained to
satisfy, together with the propagation speed V N , the
surface dissipation inequality indicated in the last of
Eq. (6). In other words, any relationship between
these two quantities must be such that this inequality
be verified. This is the basis of the formulation of a
thermodynamically admissible criterion of progress for
Σ. Indeed, we should look for a relationship V N = g( fΣ)
which satisfies the last of Eq. (6). Note that in a 1D
approach the expression of Hugo in Eq. (8) is formally
identical to the one defined in Eq. (3).

If we “force” the system evolution to be such that
there is effective progress of the front at X ∈ Σ while
there is no dissipation, then we must necessarily enforce
the following condition

fΣ = 0, i.e. HugoPT ≡ [[W −〈N.T〉F.N]] = 0. (9)

On account of the fact that the temperature θΣ is fixed,
and the thickness of the front is taken as zero, so that
uniform states are reached immediately on both sides
of Σ, Eq. (9)2 is none other than the condition of
“Maxwell” in the one-dimensional pure-shear case. Thus
a macroscopic approach dear to the engineer has allowed
us to obtain, in general, a more realistic (in general,
dissipative) progress of the front. The Type-1 approach
then appears as a “zoom” – in the nondissipative case
– on the situation described in the present paragraph
since the front acquires, through this zoom magnification
(asymptotics), a definite, although small, thickness and
a structure while rejecting the immediate vicinity of
the zero-thickness front to infinities. The next approach
allows one to introduce both thickness and dissipation.

2.3. Type-3 approach

The Type-3 approach is typical of applied mathematics.
It is mesoscopic and considers a structured front. Here
the front of phase transformation is looked upon as a
mixed viscous-dispersive structure at a meso scale. This
dialectical approach in which one applies macroscopic
concepts at a smaller scale to obtain an improved
phenomenological description is finally fruitful. This
was dealt with by Truskinovsky [12] to whom we refer
for details. We therefore consider a one-dimensional
model (along the normal to the structured front –
“theorem of the flea”) and we envisage a competition
between viscosity (i.e., a simple case of dissipation) and
some weak nonlocality accounted for through a strain-
gradient theory (compare the Type-1 approach). The
critical nondimensional parameter that compares these
two effects is defined by

ω = η/
√

ε , (10)
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where η is the viscosity and ε ≈ L2 is the nonlocality
parameter (size effect). Progressive-wave solutions u =
u(ξ = x−V Nt) of the continuous system that relate two
minimizers (uniform solutions at infinities that minimize
W ) over a distance of the order δ =

√
ε are discussed

in terms of this parameter. The mathematical problem
reduces to a nonlinear eigenvalue problem of which
the specification of the points of the discrete spectrum
constitutes the looked for kinetic relation V N = g( f ;ε),
where f = σ − σ(+∞) plays the role of the driving
force. As a matter of fact, the speed of propagation V N

satisfies the Rankine–Hugoniot equation V 2
N = [[σ ]]/ [[s]],

where strain gradients and viscosity play no role and the
jumps are taken between asymptotic values at infinity (cf.
Eq. (4)). The evolution obtained for the kinetic law is a
strongly nonlinear function and evolves with the value of
the parameter ω .

2.3. Type-4 approach

The Type-4 approach is one that would suit a theoretical
physicist. Exploiting the formalism of field theory, one
associates with the strongly localized nonlinear solutions
such as those envisaged in the Type-1 approach the
dynamics of a quasi-particle that gathers in its definition
of mass and the driving force acting or not acting on
it (then in inertial motion representing the stationary
motion of the structured but nondissipative transition
front viewed as a “massive” object) the type of involved
transition (i.e., particular solutions to the PDEs). This
was studied in some detail by Maugin and Christov [13]
on the basis of soliton-like solutions of the Type-1
approach, which yielded some strange “point dynamics”
depending on the original system of governing partial
differential equations. Typically, one obtains a motion
equation of the form

d
dt

(M(V )V ) = [[F ]] , (11)

where M(V ) is the velocity-dependent “mass” of the said
quasi-particle, and inertial motion requires the vanishing
of the right-hand side, here written symbolically as the
difference (“jump”) between the values of a driving force
between plus and minus infinity, again defined in terms
of the value of the “Eshelby stress” at infinities. This is a
hidden form of the Hugoniot condition as in the absence
of dissipation and of any external forcing on the motion
of the quasi-particle. However, the formulation (11),
esoteric as it may look to many engineers, is one that
allows for the study of the perturbation of the inertial
motion of the “phase-transition structure” by offering a
direct perturbation scheme in which one looks for the
time modulation of the motion (e.g., an acceleration
or a slowdown). Any “obstacle” (viscous zone, foreign
object, etc.) met on the path of the quasi-particle
will materialize in a non-vanishing right-hand side in
Eq. (11). Because of their association with wave pro-
cesses, we like to refer to the relevant quasi-particles as

“wavicles” [13]. As a partial conclusion of this section,
we note that the various approaches considered here have
in common the notion of Hugoniot condition or a relaxed
form of it when the Hugoniot functional, not set equal to
zero, itself produces dissipation. The various approaches
may also be pictured as in Fig. 1.

(a)

(b)

(c)

Fig. 1. (a) The phase-transition front as a zero-thickness
dissipative discontinuity surface. (b) The phase transition
seen as a relatively thick transition zone presenting a local
dissipation, and possibly a microstructure (e.g., gradient type
or Cosserat type; the linear variation is just an illustration
conveniently defining the thickness). (c) The phase-transition
front seen locally as a quasi-particle moving with a dynamics
deduced from the localized solution of the PDEs.
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3. THERMODYNAMICALLY BASED
CONTINUOUS AUTOMATON

Recently, in order to treat numerically the progress of
phase-transition fronts in thermoelasticity, Berezovski
and I [14] introduced a numerical strategy which, while
based on the thermodynamic, no-thickness singular
surface such as the Type-2 (engineering) approach of the
previous section, allows for the automatic application of
the criterion of transformation during the progression,
providing simultaneously a more reasonable (nonlinear)
kinetic law, which is here part of the solution. This is
a performing finite-volume method (FVM) adapted so
as to include the balance of material momentum and
its jump at the phase boundary. This is all the more
appropriate that the fixed FVM cells thus considered
may also be viewed as the elementary blocks of a
thermodynamics of so-called discrete systems in the
manner of Schottky (cf. Muschik [15]). In this thermo-
dynamics the state in one discrete system (e.g., one of
the computing cells) is defined in terms of its environ-
ment which may or may not be in thermodynamic
equilibrium. Contact thermodynamic quantities (e.g.,
contact temperature, contact stresses, contact velocity)
are introduced to characterize the state of the discrete
system (in fact defined at the boundary surface of a
cell in the FVM). This idea of making a cell’s state
depend on that of its neighbours is tantamount to intro-
ducing a strategy for the propagation of the thermo-
dynamic state. Although discretization here is based
on continuous balance laws, we may refer to this
method as that of continuous cellular automata. The
strategy referred to above is essential in the case of the
dynamics of a phase-transition front. In this scheme, all
thermomechanical balance laws are expressed for each
cell, and the bulk quantities within each cell are related to
the contact ones through the thermodynamics of discrete
systems. Thereby a high-performance wave-propagation
algorithm is exploited – combining Lax–Wendroff and
Godunov’s ideas (Berezovski and Maugin [14]) – that
yields extremely good results in the simulation of
the rapid progression of sharp wave fronts in 2D
thermoelasticity under the external action of an applied
stress shock. The thermodynamic justification of the
scheme and technical details are given in a recent
book [16]. The kinetic relation obtained by computing
separately the driving force and the velocity of the
front compares favourably with that deduced from the
mesoscopic approach recalled in the previous section.

4. MECHANOBIOLOGICAL PROBLEM OF
THE GROWTH PLATE EVOLUTION
(SOFT TISSUES)

Some physiological problems involving mechanics may
look like problems dealing with phase-transition fronts.
This is the case of the growth of long bones under
the influence of mechanical factors. Here the main

phenomenon is the growth at the so-called growth plate
that connects the metaphyseal bone and the epiphyseal
bone [2]. This transition zone, which may be called
the “chondro-osseous junction” (from bone to cartilage),
has a long-time stationary motion occurring with a
competition between proliferation and hypertrophy of
chondrocytes and the ossification process. In spite of the
complexity and multiplicity of processes involved in the
activation of the different behaviours of the chondro-
cytes, the growth plate considered may first be viewed
as a singular surface of a vanishingly small thickness in
steady motion (during the lengthening of the bone, which
takes years) that is governed by a kinetic law such as

VΣ = KτN , K > 0, (12)

where (bs is the quasi-static par of the Eshelby stress and
Σ connects two regions of differing elasticity, bone and
cartilage; the µ’s are chemical potentials)

τN =−N. [[bs]] .N =−(µbone−µcart), bs =W1R−T.F,
(13)

so that the local dissipation inequality VΣ fΣ > 0, fΣ +
τN = 0, is satisfied. Bone and cartilage have different
(nonlinear) elastic potentials. N is the unit normal to
the growth plate and both displacement and traction are
continuous at Σ. The stability of the motion (12) can
be studied. It is found that compression decreases the
interface rate while traction favours the lengthening of
the bone (increase in VΣ) as experimentally observed
(cf. [17]).

It is clear that this type of approach is identical
to the Type-2 approach of Section 2. However, it is
easily conceived that the problem at hand is much less
cartoonesque than that, since (i) here only mechanical
effects are taken into account, (ii) the real growth plate
has a definite thickness in which complicated rearrange-
ments take place with an obviously present micro-
structure, and (iii) the ultimate fate of the growth plate
is to close leaving only a fine print in the form of a trace
at the end of its evolution – a possible cause of further
problems such as decohesion, fracture – after consuming
all its available energy and that of the nutriments (no
more orders from hormones) when growth is completed
in adulthood. Accordingly, a possible complexification
of the modelling of the evolution of the growth plate can
be considered as in Fig. 2. There, Part (b) corresponds to
the Type-2 approach as discussed above. Part (c) would
consider a finite thickness with a transition zone that
includes a (not necessarily dissipative) microstructure
and perhaps gradients in some of the physical properties
(such as in the elasticity coefficients, as demonstrated
by experimental data obtained on the long bones of
rabbits [18]). This will provide a description closer to
the Type-1 approach of Section 2. Finally, with a thick-
ness diminishing in time and the closing of the growth
plate we are in a situation which recalls the motion of
a nonsymmetric dissipative structure or the time evolu-
tion of a quasi-particle terminating after a long time.
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Fig. 2. Schematization of the progress of the growth plate:
(a) zero thickness interface between two elastic materials
(bone and cartilage); (b) microstructured interface with
internal structural rearrangements; (c) time-evolving structure
terminating with a zero thickness.

The completion of the three schemes represents a long-
time programme of research.

5. CONCLUSION

We have first perused the various schemes that can
be applied to describe the more or less dissipative
and stationary motion of phase-transition fronts in inert
materials (crystals). Then a rather rapid description of
the problem posed by the long-time evolution of the
growth plate in long bones of mammals allowed us to
pinpoint the many traits in common with various aspects
of the first problem and the necessary appearance of
commonly shared notions such as that of the Eshelby
stress. However, the first intuitive approach is purely
mechanical and lacks physiological aspects that require
that the more realistic formulation should include some
diffusive effects related to nutriments since the system
considered cannot be an isolated one; it is open from the
point of view of thermodynamics. The type of approach
delineated and corresponding to parts (b) and (c) in
Fig. 2 is closer to the more involved approaches to
the propagation of phase fronts. In addition, some of
the theories advanced for the growth of soft tissues
(e.g., [19]) may be involved that combine with more
recent ideas such as introduced in the work of, among
others, Ambrosi and Guillou [20]. This shows that the
analogy with what happens in inert matter may be useful
but it will not be sufficient in a more inclusive scientific
approach to our mechanobiological problem.
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Faasiülemineku frontide levilt kasvuvööndi evolutsioonini pikkades luudes

Gérard A. Maugin

On vaadeldud ja võrreldud erinevaid metoodikaid, mida on kasutatud faasiülemineku frontide levi uurimisel kristal-
setes ainetes (inertsetes materjalides) eesmärgiga kindlaks määrata efektiivsed matemaatilised vahendid, mis võivad
osutuda kasulikuks imetajate pikkade luude kasvu kriitilise probleemi teaduslikul mehaanilis-bioloogilisel käsitlemi-
sel.


