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Interaction of solitary pulses in active dispersive–dissipative media
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Abstract. We examine weak interaction and formation of bound states of pulses for the generalized Kuramoto–Sivashinsky
(gKS) equation, which is one of the simplest prototypes describing active media with energy supply, dissipation, dispersion, and
nonlinearity. We derive a system of ordinary differential equations describing the leading-order dynamics of the pulses of the gKS
equation and prove a criterion for the existence of a countable infinite or finite number of bound states. Our theory is corroborated
by computations of the full equation.
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1. INTRODUCTION

In the present paper, we consider the generalized
Kuramoto–Sivashinsky (gKS) equation, also known as
the Kuramoto–Sivashinsky–Korteweg–de Vries equation
and the Benney equation (Feng et al., 2002),

ht+hhx +hxx +δhxxx +hxxxx = 0,

(x, t) ∈ (−∞, ∞)× [0, ∞).
(1)

This equation is one of the simplest prototypes modelling
a nonlinear active medium with energy supply, energy
dissipation, and dispersion and whose dynamics is
dominated by localized nonlinear pulses. The gKS
equation has been derived in many physical contexts,
including plasma waves with dispersion due to finite ion
banana width (Cohen et al., 1976), liquid films sheared
by a turbulent gas (Jurman and McCready, 1989), falling
liquid films in the presence of a viscous stress at the free
surface (Oron and Edwards, 1993), liquid films flowing
down a uniformly heated wall (Kalliadasis et al., 2003).
In the context of the falling liquid film problem, x denotes
a streamwise coordinate, t denotes time, and h denotes
the scaled local film amplitude (i.e. the deviation of
the film surface from the flat-film solution). We have
recently derived this equation for a viscous thin film

coating a vertical fibre to obtain a theoretical insight
into the interaction of the droplike pulses and formation
of bound states observed in that system (Duprat et al.,
2009). The gKS model is obtained through a weakly
nonlinear expansion for the Navier–Stokes equations and
the corresponding boundary conditions at the fibre and
the free surface written in cylindrical coordinates. A self-
consistent derivation is possible only when the radius, R,
is assumed to be large compared to the undisturbed film
thickness, H0, the Weber number, We, is assumed to be
large, and the Reynolds number, Re, is taken to be small,
more precisely,

R/H0 = O(ε−1), We = O(ε−2), Re = O(ε), (2)

where, ε ¿ 1 is the so-called long-wave or film para-
meter and is typically defined as the ratio of H0 to a
lengthscale over which streamwise variations occur. By
taking the amplitude deviation from H0 to be of O(ε2) we
then derive equation (1), where the dispersion parameter,
δ , is defined by δ = 6/(We Re A1/2) and where A =
8/(5We)+H2

0 /R2.
It is well known that for small δ the gKS equation

exhibits complicated chaotic dynamics in both space
and time. However, a sufficiently large δ arrests the
spatio-temporal chaos such that the solution evolves
into a regular array of pulses that interact indefinitely
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with each other through their tails (Kawahara, 1983).
In this case, it is feasible to consider the solution
as a superposition of such pulses and to develop a
weak interaction theory. The idea of weak interaction
theory for solitary pulses in other systems has been
implemented, for example, by Ei (2002) and Sandstede
(2002). As far as the gKS equation is concerned, previous
efforts to develop weak interaction approaches include
Elphick et al. (1991), Ei and Ohta (1994), and Chang
and Demekhin (2002). However, all previous studies
for the gKS equation appear to be either incomplete
or sometimes overlook important details and subtleties.
For instance, the spectrum of the adjoint operator of the
equation linearized around a pulse has not been analysed
carefully in this case. Our aim is to obtain a clear and
complete understanding of the pulse interaction problem
for the gKS equation and to scrutinize our results by
detailed comparisons with computations.

The rest of the paper is organized as follows. In
Section 2 we develop a weak interaction theory of
solitary pulses for the gKS equation. In Section 3
we analyse bound states of the pulses and compare
our theoretical results with computations. Section 4
is devoted to the discussion of theoretical results and
conclusions.

2. PULSE-INTERACTION THEORY FOR THE
gKS EQUATION

In a frame moving with the velocity cδ of a solitary pulse,
the gKS equation (1) takes the form

ht − cδ hx +hhx +hxx +δhxxx +hxxxx = 0. (3)

Let h0 = h0(x) be a stationary pulse. It satisfies the steady
version of (3). It can be shown that h0(x) tends to zero
exponentially and monotonically as x→−∞ and it tends
to zero exponentially either in an oscillatory manner or
monotonically as x → ∞ depending on whether δ is
below or above a threshold value δ ∗ ≈ 3.71 (Kawahara
and Toh, 1988). More specifically,

h0(x)∼C1eλ1x as x→−∞,

h0(x)∼ Re(C2eλ2x) as x→ ∞,
(4)

where C1 is a real constant and C2 is, in general, a
complex one. Here, λ1 and λ2 are nonzero roots of
the characteristic equation of the linearized stationary
equation:

λ 3 +δλ 2 +λ − cδ = 0. (5)

As was shown by Kawahara and Toh (1988), for any
value of δ there is one root that is real and positive, which
we denote by λ1. If δ is below the threshold value δ ∗,
there is a pair of complex conjugate roots, λ2 and λ̄2,
with negative real parts. Otherwise, if δ is above δ ∗,
there are two real roots with negative real parts. In this
case, we denote the root with the larger real part by λ2.

We assume that the solution, h, is described as
a superposition of n quasi-stationary pulses h1, . . . , hn
located at x1(t), . . . , xn(t), respectively; namely,

hi(x, t) = h0(x− xi(t)), i = 1, . . . , n, (6)

and a small overlap (or correction) function ĥ. Thus, we
use the ansatz

h =
n∑

i=1

hi + ĥ (7)

for the solution. Our aim is to derive a system of
equations governing the locations of the pulses. We
consider weak interaction assuming that the pulses are
sufficiently separated and, therefore, that for each pulse
it is sufficient to take into account its interaction with
only immediate neighbours. More precisely, we assume
that li ≡ xi+1 − xi = logα + O(1) for i = 1, . . . , n− 1,
where α ¿ 1, and that the velocities of the pulses, x′i,
i = 1, . . . , n, and the overlap function, ĥ, are O(α). The
linearized equation for the overlap function, ĥ, in the
vicinity of the ith pulse takes the form

ĥt − x′1h1x = L1ĥ− (h1h2)x (8)

for i = 1,

ĥt − x′ihix = Liĥ− (hi−1hi)x− (hihi+1)x (9)

for 2≤ i≤ n, and

ĥt − x′nhnx = Lnĥ− (hn−1hn)x (10)

for i = n, where Li’s are linear operators defined by

Li f = cδ fx− fxx−δ fxxx− fxxxx− (hi f )x (11)

for i = 1, . . . , n. The formal adjoint operators, L ∗
i ’s, with

respect to the usual inner product in L2
C are given by

L ∗
i f =−cδ fx− fxx +δ fxxx− fxxxx +hi fx. (12)

We note that weak interaction theories with some
rigorous results have been formulated for other systems
that presume a stable primary soliton (which is not the
case in the present study, unless the analysis is done
in an exponentially weighted space, as will be dis-
cussed later on) in Ei (2002) and Sandstede (2002), for
instance. Renormalization group techniques have been
used to capture the leading-order pulse motion for well-
separated pulses, for example, for nonlinear Schrödinger
equation, e.g. Promislow (2002). In general, the ansatz
(7) can be rigorously justified for certain equations by
proving the existence of a centre manifold that is formed
by pulse packets. For the existence of centre manifolds,
semigroups generated by linearized operators (which are
sectorial) should have exponential trichotomies.

Our next goal is to project the dynamics in the
vicinity of the ith pulse onto the null space of Li spanned
by the translational mode hix. It can be shown that
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the null space of L ∗
i is spanned by a constant and a

function, which we denote by Ψi, tending exponentially
to different constants as x → ±∞. It can be easily
seen that Ψi(x) = Ψ0(x− xi), where Ψ0 is the function
tending to different constants as x →±∞ and belonging
to the null space of L ∗

0 , where L ∗
0 is defined by (12)

with hi replaced with h0. Therefore, zero is not in the
point spectrum of L ∗

i on an infinite interval, and the
projection onto the null space of Li cannot be made in
a straightforward way. Nevertheless, projections can be
made rigorously by choosing an appropriate weighted
space, namely,

L2
a = { f : eax f ∈ L2

C}, (13)

where a is a positive sufficiently small number with
the inner product 〈 f , g〉a = 〈eax f , eaxg〉, where 〈 · , · 〉
denotes the usual inner product in L2

C. As noticed by
Pego and Weinstein (1992), studying the spectrum of
Li in L2

a is equivalent to studying the spectrum of the
operator defined by L a

i f = eaxLi(e−ax f ) on L2
C. With

such a construction, zero is an isolated eigenvalue of
both L a

i and L a∗
i of both algebraic and geometric

multiplicity unity and projections can be made in a
straightforward way. Assuming that “ĥ is free of trans-
lational modes”, i.e. that it is in the null spaces of the
projections, we arrive at the following system describing
the dynamics of the locations of the pulses:

x′1 = S1(x2− x1), (14)

x′i = S2(xi− xi−1)+S1(xi+1− xi), 1 < i < n, (15)

x′n = S2(xn− xn−1), (16)

where

S1,2(l)

≡−
∫ ∞

−∞
h0(x+ l/2)h0(x− l/2)Ψ0

x(x± l/2)dx, (17)

where the subscript 1 or 2 on the left-hand side cor-
responds to the plus or minus sign, respectively, on the
right-hand side.

3. BOUND-STATES THEORY AND
COMPARISON WITH COMPUTATIONS

We note that (14)–(16) can be transformed to a system
for the separation distances li’s, and by studying its fixed
points we can obtain the bound states of the pulses, i.e.
the states when the pulses travel together with the same
velocity.

For instance, for a bound state of two pulses we must
have:

S1(l1) = S2(l1). (18)

The graphs of S1 and S2 are shown in Fig. 1(a) for
δ = 0.4. The abscissas of the intersection points indicate

the separation distances for which bound states can be
formed, and the ordinates indicate the corresponding
velocities of the bound states relative to cδ . It is also
interesting to note that the ordinates of the intersection
points are always negative, i.e. the velocity of a two-
pulse bound state is always less than that of an individual
pulse. Another interesting observation is that for δ = 0.4
we, apparently, get a countable infinite number of bound
states. This observation can be proved analytically by
examining the behaviour of S1 and S2 as l → ∞; namely,
it can be shown that if δ is less than a threshold value
δ̃ ≈ 0.85, then there is a countable infinite number of
intersections of S1 and S2. Otherwise, there is a finite
number of intersections of S1 and S2. More specifically,
it can be shown that S1(l)∼D1e−λ1l , S2(l)∼Re(D2eλ2l)
as l → ∞, where D1 is a real constant and D2 is, in
general, a complex number. Recall that λ1 is the real
positive root of (5) and λ2 is the root of (5) with the
maximum negative real part. Therefore, if λ1 + Re λ2 >
0, there exists a countable infinite number of two-pulse
bound states. Otherwise, if λ1 + Re λ2 < 0, there exists
a finite number of two-pulse bound states (or no bound
states at all). The calculations for the gKS equation show
that λ1 +Re λ2 < 0 iff δ < δ̃ ≈ 0.85.

To validate the bound-states theory, we first com-
pared our theoretical predictions with the numerically
found bound states. To find two-pulse bound states
numerically, we use a superposition of two individual
pulses as an initial guess for our numerical method based
on a pseudospectral representation of the derivatives
and Newton iterations. Our numerical results show an
excellent agreement with the theory. The numerical
scheme converges only when the pulse separation
distance for the initial condition was sufficiently close
to a theoretically predicted bound-state separation
distance, giving a perfect match between the theory and
computations, especially for well separated pulses. Some
results are presented in Fig. 2(a) and (b) for δ = 0.5. We
can see that for l1 ≈ 9.4 the theoretical and numerical
results are graphically indistinguishable. For l1 ≈ 6.7,
there is a reasonably small discrepancy between the
theory and numerics.

Further, to validate the pulse-interaction theory, we
solved the system (14)–(16) for δ = 0.4 numerically
for two pulses and compared the results with the
numerical solutions of the full equation (3) when the
initial condition was a superposition of two pulses with
the same separation distance as that for (14)–(16). We
found very good agreement between these results. (To
solve (3) numerically, we implemented a pseudospectral
numerical method with a linear propagator so that the
linear part of the spatial operator is done exactly in
the Fourier space and the stiffness is removed, e.g.
Trefethen, 2000.)

In Fig. 1(b) we present a typical solution of the
system (14)–(16) where the space-time trajectories of 24
pulses are shown. We note that the results are shown in
the frame moving with the velocity of a solitary pulse.
Here δ = 0.4. We can observe both attractions and
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Fig. 1. (a) Dependence of S1 and S2 on the separation distance between two pulses (solid and dashed lines, respectively) for
δ = 0.4. Circles and crosses correspond to stable and unstable two-pulse bound states, respectively. (b) Evolution of pulses of
the gKS equation for δ = 0.4 obtained by solving the system (14)–(16). Attractions and repulsions can be observed as well as the
formation of bound states. (c) The histogram obtained on the statistics on 3000 pulse separation distances at t = 1000.

repulsions and the formation of two- and three-pulse
bound states. Figure 1(c) shows a histogram of the
pulse separation distance obtained on the statistics on
3000 pulse separation distances at t = 1000. The
initial distribution of the separation distances was taken
to be normal with mean 18 and standard deviation 3.
We can observe three clear peaks. We note that the
peaks are formed at around 9.5, 14, and 18.5, in very
good agreement with the stable two-pulse bound state
distances shown in Fig. 1(a).

4. DISCUSSION

We have developed a weak interaction theory of the
pulses of the gKS equation by representing its solution
as a superposition of such pulses and a small overlap
function and by deriving a system of linearized equations
for the overlap function in the vicinity of each pulse.
We found that zero is an eigenvalue of the linearized
operators of geometric and algebraic multiplicity unity
which is embedded into the essential spectrum. This
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Fig. 2. Comparison of numerically computed bound states (solid lines) with superpositions of two pulses (dashed lines) with the
theoretically predicted separation distances l1 ≈ 6.7 and 9.4 (panels (a) and (b), respectively). The results are shown for δ = 0.5.

eigenvalue is associated with the translational invariance
of the equation. However, zero is not an eigenvalue for
the corresponding adjoint operators. The null spaces
of the adjoint operators are spanned by a constant and
a function having a jump at infinity. Despite this, we
showed that projections onto the null spaces, spanned
by translational modes, can be made rigorous in an
appropriate weighted space and the derivation of a
dynamic system describing the interaction of the pulses
due to translational modes can be rigorously justified.
This system can be written in terms of the separation
distances between consecutive pulses. By analysing its
fixed points, we obtained bound states consisting of a
number of pulses. In particular, we analysed in detail the
bound states of two pulses and provided a criterion for
the existence of a countable infinite or finite number of
bound states, depending on the strength of the dispersive
term in the equation. Interestingly, this criterion exactly
coincides with Shilnikov’s criterion on the existence of
subsidiary homoclinic orbits (Glendinning and Sparrow,
1984). Our approach, however, in addition to providing
an existence result for the bound states, also gives the
description of the dynamics of the pulses. Besides, it
can be extended to higher dimensions. This extension is
left as a topic for future research. Our interaction theory
and the resulting bound states were corroborated by
computational experiments. In particular, we found that
our theory was capable of predicting pulse-separation
distances of true bound states, and that interaction of the
pulses was well described by our simplified model.
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Üksikimpulsside interaktsioon aktiivsetes dispergeeruvates
ja dissipeeruvates keskkondades

Dmitri Tseluiko, Sergey Saprykin ja Serafim Kalliadasis

Üldistatud Kuramoto-Sivashinsky (gKS) võrrandist lähtudes on vaadeldud impulsside nõrka interaktsiooni ja oma-
vahel seotud olekute formeerumist. Võrrand on üks lihtsamatest prototüüpidest, mis kirjeldab energia varustuse,
dissipatsiooni ja mittelineaarsusega aktiivset keskkonda.

On tuletatud harilike diferentsiaalvõrrandite süsteem, mis kirjeldab gKS-võrrandi impulsside dünaamika põhiosa,
ja tõestatud loenduvate lõpmatute ning lõplike arvudega seotud olekute eksisteerimise kriteerium. Arvutused täis-
võrrandil tõestavad meie teooria õigsust.


