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Abstract. We study Riemannian manifolds M admitting a semi-symmetric metric connection ∇̃ such that the vector field U is a
parallel unit vector field with respect to the Levi-Civita connection ∇. We prove that R · R̃ = 0 if and only if M is semisymmetric;
if R̃ ·R = 0 or R · R̃− R̃ ·R = 0 or M is semisymmetric and R̃ · R̃ = 0, then M is conformally flat and quasi-Einstein. Here R and R̃
denote the curvature tensors of ∇ and ∇̃, respectively.
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1. INTRODUCTION

Let ∇̃ be a linear connection in an n-dimensional differentiable manifold M. The torsion tensor T is given
by

T (X ,Y ) = ∇̃XY − ∇̃Y X − [X ,Y ].

The connection ∇̃ is symmetric if its torsion tensor T vanishes, otherwise it is non-symmetric. If there is a
Riemannian metric g in M such that ∇̃g = 0, then the connection ∇̃ is a metric connection, otherwise it is
non-metric [19]. It is well known that a linear connection is symmetric and metric if and only if it is the
Levi-Civita connection.

Hayden [9] introduced a metric connection ∇̃ with a non-zero torsion on a Riemannian manifold. Such a
connection is called a Hayden connection. In [8,13], Friedmann and Schouten introduced the idea of a semi-
symmetric linear connection in a differentiable manifold. A linear connection is said to be a semi-symmetric
connection if its torsion tensor T is of the form

T (X ,Y ) = ω(Y )X−ω(X)Y, (1)

where the 1-form ω is defined by
ω(X) = g(X ,U),

and U is a vector field. In [12], Pak showed that a Hayden connection with the torsion tensor of the form (1)
is a semi-symmetric metric connection. In [18], Yano considered a semi-symmetric metric connection and
studied some of its properties. He proved that in order that a Riemannian manifold admits a semi-symmetric
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metric connection whose curvature tensor vanishes, it is necessary and sufficient that the Riemannian
manifold be conformally flat. For some properties of Riemannian manifolds with a semi-symmetric metric
connection see also [1,4,10,16,17].

In [14,15], Szabó studied semisymmetric Riemannian manifolds, that is Riemannian manifolds
satisfying the condition R · R = 0. It is well known that locally symmetric manifolds (i.e. Riemannian
manifolds satisfying the condition ∇R = 0) are trivially semisymmetric. But the converse statement is not
true. According to Szabó, many geometrists have studied semisymmetric Riemannian manifolds.

Motivated by the studies of the above authors, in this paper we consider Riemannian manifolds (M,g)
admitting a semi-symmetric metric connection such that U is a unit parallel vector field with respect to the
Levi-Civita connection ∇. We investigate the conditions R · R̃ = 0, R̃ ·R = 0, R · R̃− R̃ ·R = 0, and R̃ · R̃ = 0
on M, where R and R̃ denote the curvature tensors of ∇ and ∇̃, respectively.

The paper is organized as follows. In Section 2 and Section 3, we give the necessary notions and
results which will be used in the next sections. In Section 4, we prove that R · R̃ = 0 if and only if M is
semisymmetric, if R̃ ·R = 0 or R · R̃− R̃ ·R = 0 or M is semisymmetric and R̃ · R̃ = 0, then M is conformally
flat and quasi-Einstein.

2. PRELIMINARIES

An n-dimensional Riemannian manifold (M,g), n > 2, is said to be an Einstein manifold if its Ricci tensor
S satisfies the condition S = r

n g, where r denotes the scalar curvature of M. If the Ricci tensor S is of the
form

S(X ,Y ) = ag(X ,Y )+bD(X)D(Y ), (2)

where a,b are scalars of which b 6= 0 and D is a non-zero 1-form, then M is called a quasi-Einstein
manifold [3].

For a (0,k)-tensor field T , k ≥ 1, on (M,g) we define the tensor R ·T (see [5]) by

(R(X ,Y ) ·T )(X1, ...,Xk) = − T (R(X ,Y )X1,X2,...,Xk)

− ...−T (X1, ...,Xk−1,R(X ,Y )Xk). (3)

If R ·R = 0, then M is called semisymmetric [14]. In addition, if E is a symmetric (0,2)-tensor field, then
we define the (0,k +2)-tensor Q(E,T ) (see [5]) by

Q(E,T )(X1, ...,Xk;X ,Y ) = − T ((X ∧E Y )X1,X2, ...,Xk)

− ...−T (X1, ...,Xk−1,(X ∧E Y )Xk), (4)

where X ∧E Y is defined by
(X ∧E Y )Z = E(Y,Z)X−E(X ,Z)Y.

The Weyl tensor of a Riemannian manifold (M,g) is defined by

C(X ,Y,Z,W ) = R(X ,Y,Z,W )− 1
n−2

[S(Y,Z)g(X ,W )−S(X ,Z)g(Y,W )

+g(Y,Z)S(X ,W )−g(X ,Z)S(Y,W )]

+
r

(n−1)(n−2)
[g(Y,Z)g(X ,W )−g(X ,Z)g(Y,W )] ,

where r denotes the scalar curvature of M. For n≥ 4, if C = 0, the manifold is called conformally flat [19].
Now we give the Lemmas which will be used in Section 4.
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Lemma 2.1. [6] Let (M,g), n ≥ 3, be a semi-Riemannian manifold. Let at a point x ∈ M be given a non-
zero symmetric (0,2)-tensor E and a generalized curvature tensor B such that at x the following condition
is satisfied: Q(E,B) = 0. Moreover, let V be a vector at x such that the scalar ρ = a(V ) is non-zero, where
a is a covector defined by a(X) = E(X ,V ), X ∈ TxM.
(i) If E = 1

ρ a⊗a, then at x we have ∑X ,Y,Z a(X)B(Y,Z) = 0, where X ,Y,Z ∈ TxM.

(ii) If E− 1
ρ a⊗a is non-zero, then at x we have B = γ

2 E ∧E, γ ∈ R. Moreover, in both cases, at x we have
B ·B = Q(Ric(B),B).

Lemma 2.2. [7] Let (M,g), n ≥ 4, be a semi-Riemannian manifold and E be the symmetric (0,2) tensor
at x ∈ M defined by E = αg + βω⊗ω , ω ∈ T ∗x M, α,β ∈ R. If at x the curvature tensor R is expressed by
R = γ

2 E ∧E, γ ∈ R, then the Weyl tensor C vanishes at x.

3. SEMI-SYMMETRIC METRIC CONNECTION

If ∇ is the Levi-Civita connection of a Riemannian manifold M, then we have

∇̃XY = ∇XY +ω(Y )X−g(X ,Y )U,

where
ω(X) = g(X ,U),

and X ,Y,U are vector fields on M. Let R and R̃ denote the Riemannian curvature tensor of ∇ and ∇̃,
respectively. Then we know that [18]

R̃(X ,Y,Z,W ) = R(X ,Y,Z,W )−θ(Y,Z)g(X ,W )

+θ(X ,Z)g(Y,W )−g(Y,Z)θ(X ,W )

+g(X ,Z)θ(Y,W ), (5)

where

θ(X ,Y ) = g(AX ,Y ) = (∇X ω)Y −ω(X)ω(Y )+
1
2

g(X ,Y ).

Now assume that U is a parallel unit vector field with respect to the Levi-Civita connection, i.e., ∇U = 0
and ‖U‖= 1. Then

(∇X ω)Y = ∇X ω(Y )−ω(∇XY ) = 0. (6)

So θ is a symmetric (0,2)-tensor field. Hence equation (5) can be written as

R̃ = R−g∧θ , (7)

where ∧ is the Kulkarni–Nomizu product, which is defined by

(g∧θ)(X ,Y,Z,W ) = g(Y,Z)θ(X ,W )−g(X ,Z)θ(Y,W )

+g(X ,W )θ(Y,Z)−g(Y,W )θ(X ,Z).

Since U is a parallel unit vector field, it is easy to see that R̃ is a generalized curvature tensor and it is trivial
that R(X ,Y )U = 0. Hence by a contraction we find S(Y,U) = ω(QY ) = 0, where S denotes the Ricci tensor
of ∇ and Q is the Ricci operator defined by g(QX ,Y ) = S(X ,Y ). It is easy to see that we also have the
following relations:
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∇̃XU = X−ω(X)U,

R̃(X ,Y )U = 0, R̃ ·θ = 0, (8)

θ 2(X ,Y ) :
de f
= g(AX ,AY ) =

1
4

g(X ,Y ),

and
S̃ = S− (n−2)(g−w⊗w), (9)

r̃ = r− (n−2)(n−1). (10)

Using (7), (9), and (10), we get
C̃ = C,

where S̃, C̃, and r̃ denote the Ricci tensor, Weyl tensor, and the scalar curvature of M with respect to semi-
symmetric connection ∇̃.

4. MAIN RESULTS

The tensors R̃ ·R and Q(θ ,T ) are defined in the same way with (3) and (4). Let (R · R̃)hi jklm and (R̃ ·R)hi jklm
denote the local components of the tensors R · R̃ and R̃ · R, respectively. Hence, we have the following
proposition:

Proposition 4.1. Let (M,g) be a Riemannian manifold admitting a semi-symmetric metric connection. If U
is a parallel unit vector field with respect to the Levi-Civita connection ∇, then

(R · R̃)hi jklm = (R ·R)hi jklm, (11)

(R̃ ·R)hi jklm = (R ·R)hi jklm−Q(g−w⊗w,R)hi jklm. (12)

Proof. Since U is parallel, we have R ·θ = 0. So from (7) we get

R · R̃ = R ·R−g∧R ·θ = R ·R.

Applying (5) in (3) and using (4), we obtain

(R̃ ·R)hi jklm = (R ·R)hi jklm−Q(θ ,R)hi jklm

− 1
2
(ghlRmi jk−ghmRli jk−gilRmh jk

+gimRlh jk +g jlRmkhi−g jmRlkhi

−gklRm jhi +gkmRl jhi)

= (R ·R)hi jklm−Q
(

θ +
1
2

g,R
)

hi jklm

= (R ·R)hi jklm−Q(g−w⊗w,R)hi jklm. (13)

This completes the proof of the proposition. ¤
As an immediate consequence of Proposition 4.1 we have the following theorem:
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Theorem 4.2. Let (M,g) be a Riemannian manifold admitting a semi-symmetric metric connection and U
be a parallel unit vector field with respect to the Levi-Civita connection ∇. Then R · R̃ = 0 if and only if M
is semisymmetric.

Theorem 4.3. Let (M,g) be a semisymmetric n > 3 dimensional Riemannian manifold admitting a semi-
symmetric metric connection. If U is a parallel unit vector field with respect to the Levi-Civita connection
∇ and R̃ ·R = 0, then M is a conformally flat quasi-Einstein manifold.

Proof. Since the condition R̃ ·R = 0 holds on M, from Proposition 4.1 we have

Q(g−ω⊗ω,R)hi jklm = 0. (14)

So we have two possibilities:
rank(g−ω⊗ω) = 1 (15)

or
rank(g−ω⊗ω) > 1. (16)

Suppose that (15) holds at a point x. Thus we have

g−ω⊗ω = ρz⊗ z,

where z ∈ T ∗x M and ρ ∈ R. Because of non-zero coefficient of g, this relation does not occur. Thus the case
(16) must be fulfilled at x. By virtue of Lemma 2.1, (14) gives us

R =
γ
2
((g−ω⊗ω)∧ (g−ω⊗ω)), γ 6= 0, γ ∈ R.

So from Lemma 2.2 we obtain C = 0, which gives us that M is conformally flat. Moreover, contracting (14)
with gi j, we get

Q(g−ω⊗ω,S)hklm = 0,

which gives us
S = λ (g−ω⊗ω),

where λ = r
n−1 : M→R is a function. So by virtue of (2), M is quasi-Einstein. Thus the proof of the theorem

is completed. ¤
Theorem 4.4. Let (M,g) be a Riemannian manifold admitting a semi-symmetric metric connection. If U
is a parallel unit vector field with respect to the Levi-Civita connection ∇ and R · R̃− R̃ ·R = 0, then M is a
conformally flat quasi-Einstein manifold.

Proof. Using (11) and (12), we get
Q(g−ω⊗ω,R)hi jklm = 0.

Using the same method in the proof of Theorem 4.3, we obtain that M is conformally flat and quasi-Einstein.
So we get the result as required. ¤

Theorem 4.5. Let (M,g) be an n > 3 dimensional semisymmetric Riemannian manifold admitting a semi-
symmetric metric connection. If U is a parallel vector field with respect to the Levi-Civita connection ∇
and R̃ · R̃ = 0, then M is conformally flat and quasi-Einstein.

Proof. From (5) we have

(R̃ · R̃)hi jklm = (R̃ ·R)hi jklm− (g∧ R̃θ)hi jklm

= (R ·R)hi jklm−Q(g−w⊗w,R)hi jklm

−ghk(R̃ ·θ)i jlm−gi j(R̃ ·θ)hklm

+gh j(R̃ ·θ)iklm +gik(R̃ ·θ)h jlm. (17)
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Using (8), equation (17) is reduced to

(R̃ · R̃)hi jklm = (R ·R)hi jklm−Q(g−ω⊗ω,R)hi jklm.

We suppose that (R̃ · R̃)hi jklm = 0 and M is semisymmetric. Using the same method in the proof of
Theorem 4.3, we obtain that M is conformally flat and quasi-Einstein. This proves the theorem. ¤

The following example shows that there is a Riemannian manifold with a semi-symmetric metric
connection having a parallel vector field associated to the 1-form satisfying R · R̃ = R ·R.

Example. Let M2m+1 be a (2m+1)-dimensional almost contact manifold endowed with an almost contact
structure (ϕ,ξ ,η), that is, ϕ is a (1,1)-tensor field, ξ is a vector field, and η is a 1-form such that

ϕ2 = I−η⊗ξ and η(ξ ) = 1.

Then
ϕ(ξ ) = 0 and η ◦ϕ = 0.

Let g be a compatible Riemannian metric with (ϕ,ξ ,η), that is,

g(ϕX ,ϕY ) = g(X ,Y )−η(X)η(Y )

or, equivalently,
g(X ,ϕY ) =−g(ϕX ;Y ) and g(X ,ξ ) = η(X)

for all X ,Y ∈ χ(M). Then M2m+1 becomes an almost contact metric manifold equipped with an almost
contact metric structure (ϕ,ξ ,η ,g). An almost contact metric manifold is cosymplectic [2] if ∇X ϕ = 0.
From the formula ∇X ϕ = 0 it follows that

∇X ξ = 0, ∇X η = 0, and R(X ,Y )ξ = 0.

So we have the following relations:

T (X ,Y ) = η(Y )X−η(X)Y,

∇̃XY = ∇XY +η(Y )X−g(X ,Y )ξ ,

θ =
1
2

g−η⊗η .

Hence ∇θ = 0 and R ·θ = 0, which gives us R · R̃ = R ·R.
A cosymplectic manifold M is said to be a cosymplectic space form if the ϕ-sectional curvature is

constant c along M. A cosymplectic space form will be denoted by M(c). Then the Riemannian curvature
tensor R on M(c) is given by [11]

4R(X ,Y,Z,W ) = c{g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W )

+g(X ,ϕW )g(Y,ϕZ)−g(X ,ϕZ)g(Y,ϕW )

−2g(X ,ϕY )g(Z,ϕW )−g(X ,W )η(Y )η(Z)

+g(X ,Z)η(Y )η(W )−g(Y,Z)η(X)η(W )

+g(Y,W )η(X)η(Z)}.
From direct calculation we get

S(X ,W ) =
nc
2
{g(X ,W )−η(X)η(W )},

which gives us that M is quasi-Einstein.
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Teatavaid semisümmeetrilisuse tingimusi rahuldavad Riemanni muutkonnad
semi-sümmeetrilise meetrilise seostusega

Cengizhan Murathan ja Cihan Özgür

On uuritud Riemanni muutkondi M sellise semi-sümmeetrilise meetrilise seostusega ∇̃, et vektorväli U on
ühikvektorväli, mis on paralleelne Levi-Civita seostuse ∇ suhtes. On tõestatud, et R · R̃ = 0 siis ja ainult siis,
kui M on semisümmeetriline; kui R̃ ·R = 0 või R · R̃− R̃ ·R = 0 või M on semisümmeetriline ja R̃ · R̃ = 0,
siis M on konformselt tasane ja kvaasi-Einstein; siin R ja R̃ on vastavalt ∇ ning ∇̃ kõverustensorid.


