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Abstract. In this paper we outline a framework of a thermodynamic theory where objective time derivatives appear in a natural
way. The entropy production of a single component fluid with a tensorial internal variable is calculated as an example. Dependence
on material quantities leads to objective derivatives in the constitutive relations resulting in a new rheological model. The viscosity
and the viscometric functions are calculated for simple shear.
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1. INTRODUCTION

Frame independence is one of the fundamental issues
in continuum physics. We believe that a true theory
of nature should be independent of an observer. The
observer independence is usually introduced through
invariance of special transformations. However, one
can give a concept of spacetime that is inherently
independent of observers [1]. Based on that observer
independent formalism one can resolve several old
and new observer related paradoxes both in special
relativistic and nonrelativistic spacetimes [2–5].

Recently we investigated the objective time
derivatives of continuum physics from this point of
view. We compared the usual, transformation based
definition of objectivity [6] to the observer independent
approach of Matolcsi and formulated the usual three
dimensional objective time derivatives as projections of
four dimensional Lie derivatives along the flow of a
continuum. The comparison revealed several important
differences, e.g. the nonrelativistic four-velocity (1,v),
which is the time derivative of the four vector (t,r(t)), is
an objective, observer independent quantity contrary to
its spacelike projection, the relative velocity v [7].

Objective time derivatives are common in rheology,
but they appear in an ad-hoc way, independently of
a thermodynamic theory. One of the exceptions is
the approach of GENERIC [8], where the objective
time derivatives appear as a consequence of the special
structure of the theory, through the Jacobi identity.

Another exception is the approach of Verhás [9], which
introduces the entropy balance through a corotational
time derivative of the entropy function.

In the following we avoid the formalism of the
nonrelativistic spacetime model and investigate some
consequences with the help of the usual relative and three
dimensional notions. In this paper we will show how
objective time derivatives can appear in nonequilibrium
thermodynamics.

In the next section we present the necessary notions
and especially the formulas of objective time derivatives
derived in a frame independent approach [10]. In the
third section we introduce material fields and assume that
the material relations are defined through them. Then
we derive the entropy production for fluids with a single
tensorial internal variable (dynamic degree of freedom).
We define the material form of thermodynamic fluxes
and forces in the entropy production and give the linear
conductivity relations among them. Then we get a
differential equation, a new rheological model, that is a
thermodynamic and frame independent modification of
the traditional Jeffreys model. In the last section we solve
the equation for stationary simple shear and calculate the
nonlinear viscosity and the viscometric functions.

2. OBJECTIVE TIME DERIVATIVES

The most important consequences of the observer
independent nonrelativistic spacetime formalism are the
following:
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1. Four vectors and tensors are unavoidable, because the
spacetime is not a simple Descartes product of time
and space.

2. Vectors and covectors should be strictly dis-
tinguished, because there is no frame independent
identification for them, contrary to the relativistic
theories.
Using four vectors and covectors is particularly easy

and natural in nonrelativistic spacetime with relative,
frame dependent notions. The four motion can be given
as (t,χ t(R)), where R is the position in the material
frame (reference configuration) and χ t(R) motion [11].
Therefore the four-deformation gradient is

ϒt(R) = DR (t, χ t(R)) =
(

1 0
vt(R) ∇Rχ t(R)

)
,

where Ft = ∇Rχ t is the usual three dimensional
deformation gradient (direct motion gradient) [11]. It
is a derivative of a vector field, therefore it is a mixed
second order tensor field. That is Ft ∈ E⊗E∗, where E
is the three dimensional vector field of the space (relative
to an inertial observer) and the star denotes its dual.
Recognizing these familiar components in the relative
four-deformation gradient tensor we can understand how
the four-notions can be avoided nonrelativistically. In the
notation we will avoid them completely.

The vector and tensor quantities do not reflect
material relations, therefore we pull them back to the
reference configuration and we call the corresponding
vectors and tensors material.
− The material form of the scalar field f (r, t) ∈ R is

ft(R) = f (χ t(R), t). (1)

− The material form of the vector field a(r, t) ∈ E is

aA = at(R) = (F−1a)(χ t(R), t). (2)

− The material form of the covector field b(r, t) ∈ E∗ is

bA = bt(R) = (F∗b)(χ t(R), t). (3)

− The material form of the tensor field A(r, t) ∈ E×E is

AA = At(R) = (F−1A(F−1)∗)(χ t(R), t). (4)

− The material form of the cotensor field B(r, t) ∈
E∗×E∗ is

BA = Bt(R) = (F∗BF)(χ t(R), t). (5)

− The material form of the mixed tensor field C(r, t) ∈
E×E∗ is

CA = Ct(R) = (F−1CF)(χ t(R), t). (6)

Here we denoted the material form shortly with the
subscript A. The material time derivative of a physical

quantity is the time derivative of its material form. From
a mathematical point of view material time derivatives
are the Lie derivatives according to the flow of the
continuum. Therefore
− The material time derivative of the scalar field

f (r, t) ∈ R is its substantial derivative

d
dt

ft(R) = ḟ = ∂t f +v ·∇ f . (7)

− The material time derivative of the vector field
a(r, t) ∈ E is its upper convected derivative

a♦ =
d
dt

at(R) = F−1ȧ−F−1ḞF−1a = (ȧ−∇va)A. (8)

− The material time derivative of the covector field
b(r, t) ∈ E∗ is its lower convected derivative

b♦ =
d
dt

bt(R) = F∗ḃ+ Ḟ∗b = (ḃ+(∇v)∗b)A. (9)

− The material time derivative of the tensor field
A(r, t) ∈ E×E is its upper convected derivative

A♦ =
d
dt

F−1A(F−1)∗

= F−1Ȧ(F−1)∗−F−1ḞF−1A(F−1)∗

−F−1A(F−1ḞF−1)∗

= (Ȧ− (∇v)A−A(∇v)∗)A. (10)

− The material derivative of the cotensor field
B(r, t) ∈ E∗×E∗ is

B♦ =
d
dt

F∗BF = F∗ȦF+ Ḟ∗BF+F∗AḞ

= (Ḃ+(∇v)∗B+B(∇v))A. (11)

− The material derivative of the mixed tensor field
C(r, t) ∈ E×E∗ is

C♦ =
d
dt

F−1CF = F−1ĊF−F−1ḞF−1CF+F−1CḞ

= (Ċ− (∇v)C+C(∇v))A. (12)

Here we have used that (F−1)̇ = −F−1ḞF−1 and
∇v = ḞF−1, therefore ∇v∗ = (F−1)∗Ḟ∗.

These are the ordinary objective time derivatives
from the traditional three dimensional point of view, too.
However, from the perspective of the four dimensional
formalism the material time derivative of a three vector
is a three vector but a material time derivative of a three-
covector is a four-covector [10]. Therefore spacelike
material time derivatives are not objective in a four
dimensional sense in general. However, if the velocity
field is independent of time, then the material time
derivative of a four-covector is spacelike, therefore for
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stationary flows the above traditional objective time
derivatives are objective from the point of view of
observer independent formulation, too.

The material time derivatives of the motion related
quantities are special. For example, the material time
derivative of the deformation gradient is its substantial
time derivative

F♦ =
d
dt

F−1F(F−1)∗ = Ḟ. (13)

For further details about the material forms and their
time derivatives in a true frame independent framework
see [10]. In the following we will see how these formulas
are related to the Second Law of thermodynamics.

3. BASIC BALANCES AND CONSTITUTIVE
THEORY

In thermodynamic rheology finite strain mechanics with
internal variables are considered. In this demonstrative
example we restrict ourselves to a single internal variable
where the basic state space is spanned by the specific
internal energy e, the deformation gradient F, and a
tensorial internal variable of state ξ .

The balance of momentum reads (in the absence of
body forces) [11]

ρ v̇−∇ · t = 0, (14)

where v = ∂ χ
∂ t |R is the velocity field, the dot above the

velocity denotes the substantial time derivative, and t is
the Cauchy stress. The density ρ is not independent
of the deformation gradient, because the density in the
reference configuration is ρ0 = ρ detF = const.

We can get the balance of kinetic energy by
multiplying (14) with the velocity and reordering the
terms

ρv · v̇−v ·∇ · t = ρ
d
dt

(
v2

2

)
−∇ · (v · t)+ t : ∇v = 0.

(15)
The balance of internal energy can be calculated

as the difference of the conserved total energy and the
kinetic energy and is given as (e.g. [9])

ρ ė+∇ ·q = t : ∇v. (16)

Here q is the heat flux.
Constitutive functions characterize the material and

only the material. The Second Law is the cornerstone
of any material theory. The entropy is a scalar material
function that depends on the basic fields of the cor-
responding continua. Our basic assumption regarding
the constitutive theory is that entropy depends on the
material form of the fields, particularly (eA,FA,ξ A).
Then the time derivative of the entropy is

ṡ(eA,FA,ξ A) =
∂ s

∂eA
e♦ +

∂ s
∂FA

F♦ +
∂ s
∂ξ

ξ ♦.

The objective time derivatives appear. However,
the objective time derivative of a scalar and of the
deformation gradient is the substantial time derivative,
as we have seen in (7) and (13); therefore, we may
substitute the balance of the internal energy (16). Then
we get the usual form of the entropy production σs, with
the material time derivative of the internal variable as
(see e.g. [9])

σs =
1

T 2 q ·∇T +
1
T

(
t+ρT F

∂ s
∂FA

)
: ∇◦v−ρ

∂ s
∂ξ

: ξ ♦

≥ 0. (17)

Here the entropy flux js is assumed to have its
classical form

js =
q
T

. (18)

The thermodynamic fluxes and forces can be
determined from the entropy production. The fluxes
are unknown functions of the basic fields and their
derivatives [12]. For heat conduction and for mechanical
interaction the fluxes are the heat flux q and the
viscous stress Fv = (t + ρT F ∂ s

∂ FA
). In the last term of

(17) the material time derivative indicates an unknown
differential equation for the internal variable, therefore
in the last term the thermodynamic flux is ξ ♦ [9].

The relation of the thermodynamic forces and fluxes
is constitutive, therefore the forces and fluxes themselves
are material quantities. However, we will assume that the
material manifold is the current configuration. This is a
reasonable and generally accepted assumption in case of
fluids. Therefore, the distinction will be important only
in case of the derivatives of the material quantities.

Moreover, in the framework of a non-relativistic
spacetime model we should pay particular attention to
distinguishing between vectors and covectors. In this
regard there is an uncertainty in the middle, mechanical
term. The stress is a tensor in (14), but the velocity
gradient is a mixed tensor field. However, the product
of a tensor and a mixed tensor is a tensor and we
cannot form its trace without any further ado. The
situation can be clarified inspecting the way how we
have got the balance of kinetic energy (15). There the
product of the balance of momentum and velocity – two
contravariant vectors – appeared. From the point of view
of frame independent formulation we have exploited
the identification of vectors and covectors in the vector
space of relative velocities that is endowed by a scalar
product. With this observation we can understand that the
velocity gradient in (15) and therefore in (17) represents
a cotensor field.

The distinction is important, because the thermo-
dynamic forces and fluxes are material forms and the
entropy production can be written with these quantities
as

σs =
1

T 2 qA · (∇T )A + tv
A : (∇◦v)A−ρ

∂ s
∂ξ A

: ξ ♦ ≥ 0.

(19)
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Here the viscous stress is a tensor field, therefore its
material form, the thermodynamic flux of the mechanical
interaction is

tv
A =

(
t+ρT F

∂ s
∂FA

)

A
= F−1tvF−1∗.

The thermodynamic force of the mechanical
interaction, the material form of the velocity gradient
γ = ∇◦v as a cotensor field is

γA = F∗γF. (20)

In the following we do not pay attention to thermal
interaction and assume that q = 0. The linear relationship
between the material thermodynamic forces and fluxes
gives

tv
A = L1γA−L12ρξ A, (21)

ξ ♦ = L21γA−L2ρξ A. (22)

For the sake of convenience the conductivity tensors
L1, L12, L21 and L2 are considered as constants. We do
not assume any symmetry relations.

One cannot eliminate the internal variable from
(21)–(22) without any further ado, because the objective
time derivative does not commute with constant matrix
multiplication. Moreover, one should be careful in case
of isotropic materials, too.

Now we assume that the material is isotropic and
the internal variable is a symmetric, traceless second
order tensor. Therefore the coupling is reduced to
the symmetric, traceless parts of the thermodynamic
forces and currents, according to the representation
theorems of isotropic tensors (Curie principle). Applying
the previously mentioned identification of the material
and current configuration (21)–(22) is reduced to the
following form

(tv)S0 = l1γS0− l12ρξ S0, (23)

(ξ ♦)S0 = l21γS0− l2ρξ S0. (24)

Here we have denoted the symmetric traceless parts
of the corresponding tensors with the superscripts S0.

4. STATIONARY SIMPLE SHEAR

Simple shear is one of the basic setups for testing the
rheological models. It is characterized by the following
velocity gradient

γ =

(0 κ 0
0 0 0
0 0 0

)
, (25)

where κ is the constant shear rate. Let us introduce
a second order symmetric traceless tensor ξ as internal

variable with the following components in the reference
frame where the velocity gradient is (25)

ξ =




ξ1 ξ12 ξ13

ξ12 ξ2 ξ23

ξ13 ξ23 −ξ1−ξ2


 .

The material derivative of ξ is

ξ ♦ =−ξ γ∗− γξ =−κ




2ξ12 ξ2 ξ23

ξ2 0 0
ξ23 0 0


 .

Substituting the above relations into (23)–(24) we
get the following solution for the components of the
viscous stress and the internal variable

t13 = t31 = t23 = t32 = 0, (26)

t12 = t21 =
κ
2

(
l1− 3l2l12l21

2κ2 +3l2
2

)
, (27)

t1 =− 2κ2l12l21

2κ2 +3l2
2

=−2t2, (28)

ξ13 = ξ31 = ξ23 = ξ32 = 0, (29)

ξ12 = ξ21 =
3κl2l21

4κ2 +6l2
2
, (30)

ξ1 =
2κ2l21l21

2κ2 +3l2
2

=−2ξ2. (31)

From the stresses one can get the nonlinear viscosity
and the corresponding viscometric functions as

η̂ =
t12

κ
=

1
2

(
l1− 3l2l12l21

2κ2 +3l2
2

)
, (32)

Ψ1 =− t1− t1
κ2 =

3l12l21

2κ2 +3l2
2
, (33)

Ψ2 =− t2− t3
κ2 = 0. (34)

The usual rheological relaxation times and viscosity
coefficients originating from the Jeffreys model can be
introduced as [9]

τ =
1

ρ l2
, η =

l1l2− l12l21

2l2
, τd =

l1
ρ(l1l2− l12l21)

.

Due to the nonnegativity of the entropy production
τ , η , and τd are nonnegative. Therefore the viscosity and
the viscometric functions can be given equivalently in a
more familiar form as

η̂ = η
3−2ρ2ττdκ2

3+2ρ2τ2κ2 , (35)

Ψ1 = 6ηρ
τ− τd

3+2ρ2τ2κ2 , (36)

Ψ2 = 0. (37)
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The viscosity and the first viscometric functions are
qualitatively similar to the corresponding functions of
other simple rheological models, like the corotational
Jeffreys. The remarkable property of our model is
the second viscometric function. According to the
experiments, the second viscometric function is small
compared to the first one [13,14]. One would expect
that the simple linear viscoelastic models would repro-
duce that behaviour. However, they will not. The
corotational Jeffreys model gives Ψ2 =−Ψ1/2, the upper
convected Maxwell model gives Ψ2 = 0. However, the
upper convected Maxwell model predicts a shear rate
independent viscosity.

As we have emphasized in the introduction, the
given three dimensional time derivatives are frame
independent only for steady flows. A comparison to time
dependent experiments requires further investigations.

5. CONCLUSIONS

We have given an outline of the thermodynamic frame-
work where objective time derivatives appear in a natural
way. Our basic assumption was that the entropy should
be the function of the material form of the basic state
variables. We tested our assumption with deriving the
simplest possible linear viscoelastic rheological model.

Contrary to the common practice in rheology, where
one can introduce different time derivatives into the
differential equation of the model in an ad-hoc way,
our approach results in a unique form. Due to a strict
distinction of vectors and covectors we have got a new
rheological model. The solution of the model equations
for stationary simple shear resulted in realistic results for
the viscosity and for the viscometric functions.
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Materiaalsed ajatuletised pöördumatute protsesside termodünaamikas

Péter Ván

On visandatud raamistik termodünaamika teooriale, milles materiaalsed tuletised ajast tekivad loomulikul viisil.
Näitena on arvutatud tensoriaalse sisemuutujaga ühekomponentse vedeliku entroopia juurdekasv. Materjali omaduste
vastastikune sõltuvus tekitab materjali olekut kirjeldavates seostes materiaalseid tuletisi, mis viivad uue reoloogilise
mudelini. Puhta nihke olukorra puhul on arvutatud viskoossus ja leitud viskomeetrilised funktsioonid.


